DOI QR코드

DOI QR Code

Effect of Surface Roughness of Al5052/CFRP Composites on the Adhesion and Mechanical Properties

Al5052/CFRP 복합소재의 표면특성이 접착성과 기계적특성에 미치는 영향

  • 이민식 (부산대학교 기계공학과 정밀가공시스템공학과) ;
  • 김현호 (부산대학교 기계공학과 정밀가공시스템공학과) ;
  • 강충길 (부산대학교 기계공학부)
  • Received : 2013.07.25
  • Accepted : 2013.10.28
  • Published : 2013.10.31

Abstract

In this study, Al5052/CFRP composites were fabricated for an automobile component by compression molding process inside a U-channel mold. Al5052 sheet were treated by sand blasting with two different particle sizes. Accordingly, surface roughness (Ra) values of $4.25{\mu}m$ and $1.85{\mu}m$ were obtained for the treated Al5052 sheets. The effect of surface roughness of Al5052 sheets on the adhesion and mechanical properties of Al5052/CFRP composites have been evaluated. Shear lap test and 3-point bending test were conducted. Results showed that the shear load for the composite fabricated by using the treated Al5052 sheets with Ra value of $1.85{\mu}m$ and $4.25{\mu}m$ were 3 and 5 times higher than Ra value of $0.73{\mu}m$ of the composite fabricated by using the untreated sheet. The bending stress of 200MPa was obtained for the composite fabricated with untreated Al5052 sheets. The bending stress increased to 400MPa when the composite fabricated from treated sheets. However, the bending stress was not influenced by treating condition through sand blasting.

본 연구에서는 차량용 Al5052/CFRP 복합재를 U-채널 몰드에서 컴프레션 몰딩 공정을 통해 제작하였다. Al5052는 샌드블라스팅을 통해 표면처리를 하였다. 표면처리를 하지 않은 판재와 표면거칠기(Ra)가 $1.85{\mu}m$ 및, $4.25{\mu}m$인 Al5052판재를 이용하여 실험을 수행하였다. 표면거칠기가 Al5052/CFRP 복합재의 접착성과 기계적 특성에 대한 영향을 전단시험과 굽힘실험을 통하여 평가하였다. 전단 시험에서는 표면거칠기가 $1.85{\mu}m$$4.25{\mu}m$ 시험편이 표면처리를 하지 않은 시험편보다 각각 3, 5배의 전단강도의 증가를 보였다. 굽힘시험에서는 표면처리를 하지 않았을 때 굽힘강도가 200 MPa에서 표면처리 후 400 MPa로 증가함을 알 수 있었다.

Keywords

References

  1. Caballeroa, F.G., Garcia-mateoa, C., Capdevilaa, C., and García de Andrésa, C., "Advanced Ultrahigh Strength Bainitic Steels", Materials and Manufacturing Processes, Vol. 22, No. 4, 2007, pp. 502-506. https://doi.org/10.1080/10426910701236023
  2. Fan, D.W., Kim, H.S., and De Cooman, B.C., "A Review of the Physical Metallurgy Related to the Hot Press Forming of Advanced High Strength Steel", Steel Research International, Vol. 80, No. 3, 2009, pp. 241-248.
  3. AL-Zubaidy, H., Zhao, X.-L., and Al-Mihaidi, R., "Mechanical Behaviour of Normal Modulus Carbon Fibre Reinforced Polymer (CFRP) and Epoxy under Impact Tensile Loads", Procedia Engineering, Vol. 10, 2011, pp. 2453-2458. https://doi.org/10.1016/j.proeng.2011.04.404
  4. Van Paepegem, W., De Geyter, K., Vanhooymissen, P., and Degrieck, J., "Effect of Friction on the Hysteresis Loops from Three-point Bending Fatigue Tests of Fibre-reinforced Composites", Composite Structures, Vol. 72, No. 2, 2006, pp. 212-217. https://doi.org/10.1016/j.compstruct.2004.11.006
  5. Yu, T., Fernando, D., Teng, J.G., and Zhao, X.L., "Experimental Study on CFRP-to-steel Bonded Interfaces", Composites: Part B: Engineering, Vol. 43, No. 5, 2012, pp. 2279-2289. https://doi.org/10.1016/j.compositesb.2012.01.024
  6. Wang, W.-X., Takao, Y., and Matsubara, T., "Galvanic Corrosion- resistant Carbon Fiber Metal Laminates", 16th International Conference on Composite Materials, Japan, Kyoto, July 2007.
  7. Al-Zubaidy, H., Al-Mahaidi, R., and Zhao, X.-L., "Experimental Investigation of Bond Characteristics Be-tween CFRP Fabrics and Steel Plate Joints under Impact Tensile Loads", Composite Structures, Vol. 94, No. 2, 2012, pp. 510-518. https://doi.org/10.1016/j.compstruct.2011.08.018
  8. Chung, H.J., Rhee, K.Y., Lee, B., and Lee, J.H., "Effect of Oxygen Plasma Treatment on the Bonding Strength of CFRP/aluminum Foam Composite", Journal of Alloys and Compounds, Vol. 481, No. 1-2, 2009, pp. 214-219. https://doi.org/10.1016/j.jallcom.2009.03.048
  9. Rhee, K.Y., and Yang, J.-H., "A Study on the Peel and Shear Strength of Aluminum/CFRP Composites Surface-treated by Plasma and Ion Assisted Reaction Method", Composites Science and Technology, Vol. 63, No. 1, 2003, pp. 33-40. https://doi.org/10.1016/S0266-3538(02)00145-8
  10. ASTM International, "Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials", D 790-03.
  11. Zhu, H., Wu, B., Li, D., Zhang, D., and Chen, Y., "Infuence of Voids on the Tensile Performance of Carbon/Epoxy Fabric Laminates", Journal of Materials Science & Technology, Vol. 27, No, 1, 2011, pp. 69-73. https://doi.org/10.1016/S1005-0302(11)60028-5

Cited by

  1. Design and Performance Evaluation of Carbon Fiber/Epoxy Composite-aluminum Hybrid Wheel for Passenger Cars vol.26, pp.6, 2013, https://doi.org/10.7234/composres.2013.26.6.386
  2. CFRP와 금속 재료의 접합을 위한 epoxy/MWCNT의 특성 분석 vol.30, pp.3, 2013, https://doi.org/10.7234/composres.2017.30.3.215
  3. 탄소 섬유 강화 플라스틱과 금속의 접합에서 표면 패턴에 따른 접합 강도 영향 vol.26, pp.4, 2017, https://doi.org/10.7735/ksmte.2017.26.4.430
  4. 가혹 환경이 복합재/Ni-Cr 합금 접착전단강도에 미치는 영향 연구 vol.33, pp.5, 2013, https://doi.org/10.7234/composres.2020.33.5.275