DOI QR코드

DOI QR Code

Microstructure and Ablation Performance of CNT-phenolic Nanocomposites

삭마 효과에 대한 CNT-페놀 나노복합재료의 미세구조 분석

  • 왕작가 (경상대학교 나노.신소재공학부 대학원) ;
  • 권동준 (경상대학교 나노신소재융합공학부 대학원) ;
  • 박종규 (국방과학연구소 제 4연구개발본부) ;
  • 이우일 (서울대학교 기계.항공공학부) ;
  • 박종만 (경상대학교 나노.신소재공학부, 나노신소재융합공학과 공학연구원)
  • Received : 2013.06.27
  • Accepted : 2013.10.28
  • Published : 2013.10.31

Abstract

Highly ablation resistant carbon nanotube (CNT)-phenolic composites were fabricated by the addition of low concentrations of CNT nanofiller. Tensile and compressive properties as well as ablative resistance were significantly improved by the addition of only 0.1 and 0.3 wt% of uniformly dispersed CNTs. An oxygen-kerosene-flame torch and a field emission scanning electron microscope (FE-SEM) were used to evaluate the ablative properties and microstructures of these CNT-phenolic composites. Thermal gravimetric analysis (TGA) revealed that the ablation rate was lower for the 0.3 wt% CNT-phenolic composites than for neat phenolic or the composite with 0.1 wt% CNT. Ablative mechanisms for all three materials were investigated using this TGA in conjunction with microstructural studies using a FE-SEM. The microstructural studies revealed that CNT acted as an ablation resistant phase at high temperatures, and that the uniformity of dispersion of the CNT played an important role in this resistance to ablation.

소량의 CNT 나노입자를 함유한 CNT-페놀 복합재료를 제조하여 삭마 효과를 확인하였다. CNT 함량을 0.1 wt%에서 0.3 wt%까지 증가시킴에 따른 인장, 압축 강도를 평가하고 삭마 저항성에 대한 차이를 분석하였다. 산소와 등유를 혼합하여 화염 발생시켜 재료의 삭마 효과를 평가하였다. FE-SEM을 이용하여 삭마 실험 이후 발생된 시편의 미세 구조 변화를 확인하였다. CNT 함유 정도에 따른 TGA 열분석을 시도하여 열적 안정성을 평가하였다. 0.3wt% CNT-페놀 복합재료가 일반 페놀 수지 및 0.1 wt% CNT-페놀 복합재료보다 삭마율이 낮았다. 삭마에 따른 재료 변화 메커니즘을 규명하기 위해 TGA 분석 결과와 FE-SEM을 이용한 미세 구조 결과를 분석하였다. 고열의 화염을 이용한 삭마 실험을 통해 시편 내부의 CNT 입자가 존재하는 미세구조를 확인할 수 있었다. 수지 내부에 균일하게 분산된 CNT 입자의 역할이 내삭마성을 증가시키는 결과를 확인하였다.

Keywords

References

  1. Covington, M.A., and Heinemann, J.M., "Performance of a Low Density Ablative Heat Shield Material," Journal of Spacecraft Rockets, Vol. 45, 2008, pp. 237-247. https://doi.org/10.2514/1.12403
  2. Donskoy, A.A., "Elastomeric Heat Shielding Materials for Internal Surfaces of Missile Engines," International Journal of Polymeric Materials, Vol. 31, 1996, pp. 215-236. https://doi.org/10.1080/00914039608029377
  3. Luo, C.S., and DesJardin, P.E., "Thermo-mechanical Damage Modeling of a Glass-phenolic Composite Material," Composites Science and Technology, Vol. 67, 2007, pp. 1475-1488. https://doi.org/10.1016/j.compscitech.2006.07.030
  4. Trick, K.A., and Saliba, T.E., "Mechanisms of the Pyrolysis of Phenolic Resin in a Carbon/Phenolic Composite," Carbon, Vol. 33, 1995, pp. 1509-1515. https://doi.org/10.1016/0008-6223(95)00092-R
  5. Patton, R.D., Pittman, C.U., Wang, L., Hill, J.R., and Day, A.,"Ablation, Mechanical and Thermal Conductivity Properties ofVapor Grown Carbon Fiber/Phenolic Matrix Composites,"Composites: Part A, Vol. 22, 2002, pp. 243-251.
  6. Xiao, J., Chen, J.M., Zhou, H.D., and Zhang, Q., "Study of SeveralOrganic Resin Coatings as Anti-ablation Coatings forSupersonic Craft Control Actuator," Materials Science and Engineering,A, Vol. 452, 2007, pp. 23-30.
  7. Park, J.K., Cho, D.H., and Kang, T.J., "A Comparison of theInterfacial, Thermal, and Ablative Properties Between Spunand Filament Yarn Type Carbon Fabric/Phenolic Composites,"Carbon, Vol. 42, 2004, pp. 795-804. https://doi.org/10.1016/j.carbon.2004.01.046
  8. Natali, M., Monti, M., Puglia, D., Kenny, J.M., and Torre, L.,"Ablative Properties of Carbon Black and MWNT/phenolicComposites: A Comparative Study," Composites: Part A, Vol.43, 2012, pp. 174-182. https://doi.org/10.1016/j.compositesa.2011.10.006
  9. Iijima, S., "Helical Microtubules of Graphitic Carbon," Nature,Vol. 354, 1991, pp. 56-58. https://doi.org/10.1038/354056a0
  10. Wang, Z.J., Kwon, D.J., Gu, G.Y., Lee, W.I., Park, J.K., and Park,J.M., "Plasma Treatment of Carbon Nanotubes and InterfacialEvaluation of CNT-Phenolic Composites by Acoustic Emissionand Dual Matrix Techniques," Journal of the Korean Society forComposite Materials, Vol. 25, No. 3, 2012, pp. 76-81. https://doi.org/10.7234/kscm.2012.25.3.076
  11. Yeh, M.K., Tai, N.H., and Liu, J.H., "Mechanical Behavior ofPhenolic-based Composites Reinforced with Multi-walled CarbonNanotubes," Carbon, Vol. 44, 2006, pp. 1-9. https://doi.org/10.1016/j.carbon.2005.07.005
  12. Park, J.M., Wang, Z.J., Kwon, D.J., Gu, G.Y., Lee, W.I., Park, J.K., and DeVries, K.L., "Optimum Dispersion Conditions and Interfacial Modification of Carbon Fiber and CNT-Phenolic Composites by Atmospheric Pressure Plasma Treatment," Composites: Part B, Vol. 43, 2012, pp. 2272-2278. https://doi.org/10.1016/j.compositesb.2012.01.025

Cited by

  1. Prediction of Wetting and Interfacial Property of CNT Reinforced Epoxy on CF Tow Using Electrical Resistance Method vol.28, pp.4, 2015, https://doi.org/10.7234/composres.2015.28.4.232
  2. A Study of Damage Sensing and Repairing Effect of CNT Nanocomposites vol.27, pp.6, 2014, https://doi.org/10.7234/composres.2014.27.6.219
  3. Laser Shielding and Thermal Ablation Characteristics of Resorcinol Formaldehyde/Boron Nitride Composites for Thermal Protection Systems vol.55, pp.40, 2016, https://doi.org/10.1021/acs.iecr.6b01443
  4. A Study on Improvement of Thermal and Adhesion Properties of Stone/Wood Composites for Stone Bed using CNT-epoxy Adhesive vol.29, pp.5, 2016, https://doi.org/10.7234/composres.2016.29.5.276
  5. CFRP/금속간 접합력 강화를 위한 접합공정 연구 vol.30, pp.6, 2017, https://doi.org/10.7234/composres.2017.30.6.416
  6. Effect of Boron Nitride Addition on Ablation Characteristics of Carbon Fiber Reinforced Resorcinol Formaldehyde Composites vol.59, pp.43, 2020, https://doi.org/10.1021/acs.iecr.0c03818