DOI QR코드

DOI QR Code

Zooplankton Community Distribution and Food Web Structure in Small Reservoirs: Influence of Land Uses around Reservoirs and Kittoral Aquatic Plant on Zooplankton

소형저수지에서 동물플랑크톤 군집 분포와 먹이망 구조: 주변 토지 이용과 수변식생이 동물플랑크톤 군집에 미치는 영향

  • Choi, Jong-Yun (Department of Biological Sciences, Pusan National University) ;
  • Kim, Seong-Ki (Department of Biological Sciences, Pusan National University) ;
  • Hong, Sung-Won (Department of Biological Sciences, Pusan National University) ;
  • Jeong, Kwang-Seuk (Department of Biological Sciences, Pusan National University) ;
  • La, Geung-Hwan (Department of Environmental Education, Sunchon National University) ;
  • Joo, Gea-Jae (Department of Biological Sciences, Pusan National University)
  • Received : 2013.01.17
  • Accepted : 2013.06.25
  • Published : 2013.09.30

Abstract

We collected zooplankton from May to October, 2011, with the aim of understanding the zooplankton community distribution and food web interaction between the open water and littoral (aquatic plants) zones in two small reservoirs with different land covers (Sobudang, Myeongdong). Small-sized reservoirs are more abundant in South Korea, and a total of 51 and 65 species of zooplankton were identified at the two small reservoir (Sobudang and Myeongdong), where zooplankton densities were more abundant in the littoral zone than in the open water zone. Cladocerans and copepods densities were also higher in the littoral zone, in contrast, rotifers showed higher densities in the open water zone (t-test, P/0.05). Epiphytic zooplankton dominated at the littoral zone (Lecane, Monostyla, Alona and Chydorus) because aquatic plants provided refuge spaces for attachment. Some rotifers (e.g. Brachionus, Keratella and Polyarthra) were more abundant in the open water zone because of their small size, which might help them to go unnoticed by predators. In two-way ANOVA, rotifers related to two reservoirs or habitat space (littoral zone and open water zone), but cladocerans and copepods showed a statistically significant relationship on only two reservoirs. The results of stable isotope analysis showed that zooplankton in the littoral zone tended to depend on organic matter attached to aquatic plants as a food source, which indicates the avoidance of competition of zooplankton with other macro-invertebrates (e.g. Damselfly larva, Cybister brevis and Neocardina denticulate). As a result, zooplankton community distribution is determined by not only habitat space (aquatic plant zone and open water zone) but also by food source (phytoplankton).

주변 토지 이용이 다른 소부당과 명동저수지의 수변부와 개방수역간에 동물플랑크톤 군집 분포와 먹이망을 파악하기 위해 2011년 5월부터 10월까지 조사를 수행하였다. 소부당과 명동저수지의 동물플랑크톤은 각각 51종, 65종이 출현하였으며, 수변부와 개방수역간에 뚜렷한 밀도 차이를 보였다(t-test, P<0.05). 지각류와 요각류는 수변부에서 높은 밀도를 보인 반면, 윤충류는 개방수역에서 더 높은 밀도를 나타냈다(t-test, P<0.05). 수변부에서 출현한 동물플랑크톤 종은 주로 부착성 성향을 가진 종이었다(Lecane, Monostyla, Alona 그리고 Chydorus). Chl.a의 농도가 높은 명동저수지에서는 부유성 윤충류(Brachionus, Keratella 그리고 Polyarthra)의 높은 밀도가 관찰 되었다. Two-way ANOVA 결과, 윤충류는 서식처의 특성과 토지 이용이 다른 두 저수지간에 뚜렷한 차이를 보인 반면, 지각류와 요각류는 서식처의 특성에만 의존하는 것으로 나타났다. 저수의 영양상태가 주변 토지 이용과 밀접하게 연관되는 점을 감안하면, 윤충류는 서식처의 특성 뿐만 아니라 저수지의 영양상태에 따른 먹이자원에도 밀접하게 연관되는 것으로 보인다. 그러나 지각류와 요각류는 먹이자원보다 서식처의 특성에 주로 영향받는다. 안정동위원소 분석 결과, 부유성 Chl.a의 높은 값에도 불구하고 동물플랑크톤은 주로 부착입자 유기물에 대해 의존하였다. 이것은 실잠자리 유충, 검정물방개 그리고 새뱅이 같은 무척추동물과의 먹이 경쟁을 피하기 위한 것으로 사료된다. 결과적으로 동물플랑크톤 군집 분포는 습지의 공간적 특성 및 먹이자원에 의해 결정되는 것으로 보인다. 흥미로운 점은 동물플랑크톤 군집 밀도를 결정하는 수생식물이나 식물플랑크톤 등은 수체 내의 영양염류의 농도에 영향받으며, 이는 습지 주변 토지 피복이 매우 중요하게 고려된다는 것이다.

Keywords

References

  1. Balayla, D.J. and B. Moss. 2003. Spatial patterns and population dynamics of plant-associated microcrustacea (Cladocera) in an English shallow lake (Little Mere, Cheshire). Aquatic Ecology 37: 417-435. https://doi.org/10.1023/B:AECO.0000007045.85315.dc
  2. Battin, T.J., L.A. Kaplan, J.D. Newbold and C.M.E. Hansen. 2003. Contributions of microbial biofilms to ecosystem processes in stream mesocosms. Nature 426: 439-442. https://doi.org/10.1038/nature02152
  3. Beaudoin, C.P., E.E. Prepas, W.M. Tonn, L.I. Wassenaar and B.G. Kotak. 2001. A stable carbon and nitrogen isotope study of lake food webs in Canada' s Boreal Plain. Freshwater Biology 46: 465-477. https://doi.org/10.1046/j.1365-2427.2001.00688.x
  4. Benndorf, J., H. Kneschke, K. Kossatz and E. Penz. 1984. Manipulation of the pelagic food web by stocking with predacious fishes. Internationale Revue Der Gesamten Hydrobiologie 69: 407-428. https://doi.org/10.1002/iroh.19840690308
  5. Carey, M.P., K.O. Maloney, S.R. Chipps and D.H. Wahl. 2010. Effects of littoral habitat complexity and sunfish composition on fish production. Ecology of Freshwater Fish 19: 466-476. https://doi.org/10.1111/j.1600-0633.2010.00433.x
  6. Castilho-Noll, M.S.M., C.F. Camara, M.F. Chicone and E.H. Shibata. 2010. Pelagic and littoral cladocerans (Crustacea, Anomopoda and Ctenopoda) from reservoirs of the Northwest of Sao Paulo State, Brazil. Biota Neotropica.
  7. Cattaneo, A., G. Galanti, S. Gentinetta and S. Romo. 1998. Epiphytic algae and macroinvertebrates on submerged and floating-leaved macrophytes in an Italian lake. Freshwater Biology 39: 725-740. https://doi.org/10.1046/j.1365-2427.1998.00325.x
  8. Cazzanelli, M., T.P. Warming and K.S. Christoffersen. 2008. Emergent and floating-leaved macrophytes as refuge for zooplankton in a eutrophic temperate lake without submerged vegetation. Hydrobiologia 605: 113-122. https://doi.org/10.1007/s10750-008-9324-1
  9. Eriksson, P.G. 2001. Interaction effects of flow velocity and oxygen metabolism on nitrification and denitrification in biofilms on submersed macrophytes. Biogeochemistry 55: 29-44. https://doi.org/10.1023/A:1010679306361
  10. Fry, B. and S.C. Wainright. 1991. Diatom sources of 13Crich carbon in marine food webs. Marine Ecology Progress Series 76: 149-157. https://doi.org/10.3354/meps076149
  11. Galbraith, L.M. and C.W. Burns. 2007. Linking land-use, water body type and water quality in southern new zealand. Landcrape Ecology 22: 231-241.
  12. Hansen, J.P., S.A. Wikstrom, H. Axemar and L. Kautsky. 2011. Distribution differences and active habitat choices of invertebrates between macrophytes of different morphological complexity. Aquatic Ecology 45: 11-22. https://doi.org/10.1007/s10452-010-9319-7
  13. Harrel, S.L. and E.D. Dibble. 2001. Foraging efficiency of juvenile bluegill, Lepomis macrochirus, among different vegetated habitats. Environmental Biology of Fishes 62: 441-453. https://doi.org/10.1023/A:1012259922727
  14. Hecky, R.E. and R.H. Hesslein. 1995. Contributions of benthic algae to lake food webs as revealed by stable isotope analysis. Journal of the North American Benthological Society 14: 631-653. https://doi.org/10.2307/1467546
  15. Horppila, J., P. Eloranta, A. Liljendahl-Nurminen, J. Niemisto and Z. Pekcan-Hekim. 2009. Refuge availability and sequence of predators determine the seasonal succession of crustacean zooplankton in a clay-turbid lake. Aquatic Ecology 43: 91-103. https://doi.org/10.1007/s10452-007-9158-3
  16. Jepsen, D.B. and K.O. Winemiller. 2002. Structure of tropical river food webs revealed by stable isotope ratios. Oikos 96: 46-55. https://doi.org/10.1034/j.1600-0706.2002.960105.x
  17. Kuczynska-Kippen, N., B. Nagengast and T. Joniak. 2009. The impact of biometric parameters of a hydromacrophyte habitat on the structure of zooplankton communities in various types of small water bodies. Oceanological and Hydrobiological Studies 38: 99-108.
  18. Lee, J.Y., T. Yoshioks, T. Hanazoto. 2002. Faunal trophic interaction in an oligotrophic-dystrophic lake (Shirakoma- like, Japan). Limnology 3: 151-158. https://doi.org/10.1007/s102010200018
  19. Manatunge, J., T. Asaeda and T. Priyadarshana. 2000. The influence of structureal complexity on fish-zooplankton interactions: A study using srtificial submerged macrophytes. Environmental Biology of Fishes 56: 169-181.
  20. Medeiros, E.S.F. and A.H. Arthington. 2008. The importance of zooplankton in the diets of three native fish species in floodplain waterholes of a dryland river, the Macintyre River, Australia. Hydrobiologia 614: 19-31. https://doi.org/10.1007/s10750-008-9533-7
  21. Meerhoff, M., C. Iglesias, F.T. De Mello, J.M. Clemente, E. Jensen, T.L. Lauridsen and E. Jeppesen. 2007. Effects of habitat complexity on community structure and predator avoidance behaviour of littoral zooplankton in temperate versus subtropical shallow lakes. Freshwater Biology 52: 1009-1021. https://doi.org/10.1111/j.1365-2427.2007.01748.x
  22. Moss, B., R. Kornijow and G.J. Measey. 1998. The effects of nymphaeid (Nuphar lutea) density and predation by perch (Perca fluviatilis) on the zooplankton communities in a shallow lake. Freshwater Biology 39: 689-697. https://doi.org/10.1046/j.1365-2427.1998.00322.x
  23. Nurminen, L.K.L. and J.A. Horppila. 2002. A diurnal study on the distribution of filter feeding zooplankton: Effect of emergent macrophytes, pH and lake trophy. Aquatic Sciences 64: 198-206. https://doi.org/10.1007/s00027-002-8067-8
  24. Nurnberg, G.K. and M. Shaw. 1998. Productivity of clear and humic lakes: nutrients, phytoplankton, bacteria. Hydrobiologia 382: 97-112. https://doi.org/10.1023/A:1003445406964
  25. Reinhardt, E.G., M. Little, S. Donato, D. Findlay, A. Krueger, C. Clark and J. Boyce. 2005. Arcellacean (thecamoebian) evidence of land-use change and eutrophication in Frenchman' s Bay, Pickering, Ontario. Environmental Geology 47: 729-739. https://doi.org/10.1007/s00254-004-1213-y
  26. Uusi-Kamppa, J., B. Braskerud, H. Jansson, N. Syversen and R. Uusitalo. 2000. Buffer zones and constructed wetlands as filters for agricultural phosphorus. Journal of Environmental Quality 29: 151-158.
  27. Van de Meutter, F., R. Stoks and L. De Meester. 2004. Behavioral linkage of pelagic prey and littoral predators: microhabitat selection by Daphnia induced by damselfly larvae. Oikos 107: 265-272. https://doi.org/10.1111/j.0030-1299.2004.13221.x
  28. Wetzel, R.G. and G.E. Likens. 2000. Limnological Analyses. Springer-Verlag, NY, pp. 20-70.