DOI QR코드

DOI QR Code

Effects of Salt Stress on Inorganic Ions and Glycine Betaine Contents in Leaves of Beta vulgaris var. cicla L.

염 스트레스가 근대(Beta vulgaris var. cicla L.)의 무기이온 및 glycine betaine 함량에 미치는 영향

  • Choi, Sung-Chul (Department of Biology, Kyungpook National University) ;
  • Kim, Jong-Guk (Department of Life Science and Biotechnology, Kyungpook National University) ;
  • Choo, Yeon-Sik (Department of Biology, Kyungpook National University)
  • Received : 2013.05.21
  • Accepted : 2013.08.23
  • Published : 2013.09.30

Abstract

Growth, inorganic solutes and glycine betaine accumulation in spinach beet (Beta vulgaris var. cicla L.) were studied under different salt conditions. Plants of fortythree days old were assessed by growing for a further 10 and 20 days at four NaCl concentrations (0, 100, 200, 300 & 400 mM). The dry weight of leaves was maximal in plants which were grown at 100 to 200 mM NaCl treatments and after 10d it was decreased slightly at salt treatments of more than 300 mM NaCl. Under the salt conditions, leaves of B. vulgaris contained high inorganic ions to maintain low water potential, but low water soluble carbohydrate contents. Total ionic content and osmolality increased with increasing salt concentration. Salt stress led to a preferential accumulation of glycine betaine in leaves of B. vulgaris, especially for the 200 mM NaCl treatment. These findings suggest that a high degree of NaCl tolerance of B. vulgaris resulted from the accumulation of glycine betaine, which is known to have osmoprotectant properties in the cytoplasm.

염(NaCl) 스트레스 하에서 근대의 이온축적 및 삼투조절물질로 알려진 Glycine betaine (GB) 함량 변화를 알아보기 위하여 0, 100, 200, 300 및 400mM의 염(NaCl)을 처리하여 생장, 이온양상 및 GB 함량을 조사하였다. 염(NaCl) 농도와 처리시간이 증가함에 따라 근대 잎의 건중량은 염(NaCl) 0, 100 그리고 200 mM은 큰 변화를 보이지 않았으나 300 mM 이상의 염(NaCl) 농도에서는 감소하는 경향이 나타내었다. 양이온 함량은 염(NaCl) 농도 및 처리시간이 증가함에 따라 증가하였으며, 주로 $Na^+$ 이온을 축적하며 $K^+$, $Mg^{2+}$, $Na^+$, $Ca^{2+}$ 그리고 $Fe^{2+}$ 순으로 식물체 내에 함유하는 것으로 나타났다. 총 이온함량과 삼투몰 농도는 염(NaCl) 농도가 증가함에 따라 증가하는 양상을 보였으며, $Na^+$와 같은 무기이온을 직접적인 삼투 조절자로 이용하는 것으로 나타났다. Glycine betaine은 10일째까지는 함량의 변화를 보이지 않았으나 염 처리 후 20일째 200 mM 염(NaCl) 농도까지 현저하게 Glycine betaine 농도가 증가하였으며, 300mM 염(NaCl) 농도에서는 다소 감소되는 양상을 보였다. 근대는 염(NaCl) 스트레스에 대한 세포질성 삼투 조절물질로 Glycine betaine을 축적하는 특성을 나타내었다. 결과적으로, 근대는 식물체 내로의 염(NaCl)의 유입을 배제하는 기작보다는 효율적인 염(NaCl)의 재분배 및 구획화와 무기이온을 삼투조절에 이용하며, Glycine betaine과 같은 세포질성 삼투조절물질을 축적하는 생리적 특성으로 염(NaCl) 환경을 극복하는 것으로 여겨진다.

Keywords

References

  1. Akhani, H., P. Trimborn and H. Ziegler. 1997. Photosynthetic pathways in Chenopodiaceae from Africa, Asia and Europe with their ecological, phytogeographical and taxonomical importance. Plant Systematics and Evolution 206: 187-221. https://doi.org/10.1007/BF00987948
  2. Ashraf, M.R., Z.U. Noor Zafar and M. Muhahid. 1994. Growth and in distribution in salt stressed Melilotus indica (L.) ALL. And Medicago sativa L. Flora 189: 207-213.
  3. Bradley, P.H. and J.T. Morris. 1991. Relative importance of ion exclusion, secretion and accumulation in Spartina alterniflora Loisel. Journal of Experimental Botany 42: 1525-1532. https://doi.org/10.1093/jxb/42.12.1525
  4. Chaplin, M.F. and J.F, Kennedy. 1994. Carbohydrate Analysis: A Practical Approach, p. 2-3. In: Monosaccharide (Chaplin, M.F. eds.). Oxford University Press, New York.
  5. Choi, S.C., J.J. Bae and Y.S. Choo. 2004. Inorganic and organic solute pattern of costal plant, Korea. Korea Journal of Ecology 27: 355-361.
  6. Choi, S.C., S.H. Lim, S.H. Kim, D.G. Choi, J.G. Kim and Y.S. Choo. 2012. Growth and solute pattern of Suaeda maritima and Suaeda asparagoides in an abandoned salt field. Journal of Ecology and Field Biology 35: 1-8. https://doi.org/10.5141/JEFB.2012.001
  7. Choo, Y.S. and R. Albert. 1997. The physiotype concept: an approach integrating plant ecophysiology and systematics. Phyton 37: 93-106.
  8. Choo, Y.S. and R. Albert. 1999. Mineral ion, nitrogen and organic solute pattern in sedges (Carex spp.) - a contribution to the physiotype concept, I. Field samples. Flora 194: 59-74.
  9. Choo, Y.S. and S.D. Song. 1998. Ecophysiological characeristics of plant taxon-specific calcium metabolism. Korean Journal of Ecology 21: 47-74.
  10. Di Martino, C.S. Delfine, R. Pizzuto, F. Loreto and A. Fuggi. 2003. Free amino acids and glycine betaine in leaf osmoregulation of spinach responding to increasing salt stress. New Phytologist 158: 455-463. https://doi.org/10.1046/j.1469-8137.2003.00770.x
  11. Flowers, T.J. and T.D. Colmer. 2008. Salinity tolerance in halophytes. New Phytologist 179: 945-963 https://doi.org/10.1111/j.1469-8137.2008.02531.x
  12. Ghoulam, C. and K. Fares. 2001. Effect of salinity on seed germination and early seedling growth of sugar beet (Beta vulgaris L.) Seed Science and Technology 29: 357- 364.
  13. Gzik, A. 1996. Accumulation of proline and pattern of alphaamino acids in sugar beet plants in response to osmotic, water and salt stress. Environmental and Experimental Botany 36: 29-38. https://doi.org/10.1016/0098-8472(95)00046-1
  14. Harinasut P., K. Tsutsui, T. Takabe, M. Nomura, T. Takabe and S. Kishitani. 1996. Exogenous glycinebetaine accumulation and increased salt-tolerance in rice seedings. Bioscience. Biotechnology and Bionchemistry 60: 366- 368. https://doi.org/10.1271/bbb.60.366
  15. Heywood, V.H. 1993. Flowering Plants of the World, p. 72- 73. B.T. Batsford, London..
  16. Kenter C. and C.M. Hoffmann. 2005. Seasonal patterns of sucrose concentration in relation to other quality parameters of sugar beet (Beta vulgaris L.). Journal of the Science of Food and Agriculture 86: 62-70.
  17. Kim, J.A., Y.S. Choo, I.J. Lee, J.J. Bae, I.S. Kim, B.Y. Choo and S.D. Song. 2002. Adaptations and Physiological Characteristics of Three Chenopodiaceae Species under Saline Environments. Korean Journal of Ecology 25: 171-177.
  18. Larcher, W. 2003. Physiological Plant Ecology, p. 345-450, Springer.
  19. Lee, J.S. 1988. Studies on the distribution of vegetation in the salt marsh of the Mankyung River estuary. Korean Journal of Environmental Biology 6: 1-10.
  20. Li, R., F. Shi and K. Fukuda. 2010. Interactive effects of various salt and alkali stresses on growth, organic solutes and cation accumulation in halophyte Spartina alterniflora (Poaceae). Environmental and Experimental Botany 68: 66-74. https://doi.org/10.1016/j.envexpbot.2009.10.004
  21. Lopez, M.V. and S.M. E Satti. 1996. Calcium and potassiumenhanced growth and yield of tomato under sodium chloride stress. Plant Science 114: 19-27. https://doi.org/10.1016/0168-9452(95)04300-4
  22. Marschner, H. 1995. Minernal nutirition of higher plant, p. 662-663. Academic press, London.
  23. McCue, K.F. and A.D. Hanson. 1990. Drought and salt tolerance: towards understanding and application. Trends Biotechnol 8: 358-362. https://doi.org/10.1016/0167-7799(90)90225-M
  24. Moghaieb, R.E.A., H. Saneoka and K. Fujita. 2004. Effect of salinity on osmoticadjustment, glycinebetaine accumulation and the betaine aldehyde dehydrogenase gene expression in two halophytic plants, Salicornia europaea and Suaeda maritima. Plant Science 166: 1345-1349. https://doi.org/10.1016/j.plantsci.2004.01.016
  25. Popp, M. and N. Smirnoff. 1995. Polyol accumulation and metabolism during water deficit, p. 199-215. In: Environment and Plant Metabolism : Flexibility and Acclimation (Smironoff, N. ed.). Bios Scientific oxford.
  26. Rhodes, D. and A.D. Hanson. 1993. Quaternary ammonium and tertiary sulfonium compounds in higher plants. Annual Review of Plant Physiology and Plant Molecular Biology 44: 357-384. https://doi.org/10.1146/annurev.pp.44.060193.002041
  27. Sakamoto, A. and N. Murata. 2002. The role of glycine betaine in the protection of plant from stress: clues from transgenic plants. Plant, Cell and Environment 25: 163- 171. https://doi.org/10.1046/j.0016-8025.2001.00790.x
  28. Shabala, S. and A. Mackay. 2011. Ion transport in halophytes. Advances in Botany 57: 151-199. https://doi.org/10.1016/B978-0-12-387692-8.00005-9
  29. Volkmar, K.M., Y. Hu and H. Steppuhn. 1998. Physiological responses of plants to salinity: a review. Canadian Journal of Plant Science 78: 19-27. https://doi.org/10.4141/P97-020
  30. Wang, L.W. and A.M. Showalter. 2004. Cloning and saltinduced, ABA-independent expression of choline monooxygenase in Atriplex prostrata. Physiologia Plantarum 120: 405-412. https://doi.org/10.1111/j.0031-9317.2004.00247.x
  31. Wang, W., B. Vinocur and A. Altman. 2003. Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218: 1- 14. https://doi.org/10.1007/s00425-003-1105-5