DOI QR코드

DOI QR Code

Effects of Climate and Human Aquatic Activity on Early Life-history Traits in Fish

기후변화와 수상레저활동 인구변화가 어류의 초기생활사에 미치는 영향

  • Lee, Who-Seung (Department of Biological Sciences, Universite du Quebec a Montreal)
  • 이후승 (퀘벡주립대학교 생물학과)
  • Received : 2013.06.10
  • Accepted : 2013.09.12
  • Published : 2013.09.30

Abstract

Environmental condition can induce changes in early life-history traits in order to maximise the ecological fitness. Here I investigated how temperature change and variation in human aquatic activity/behaviour affect early life-history consequences in fish using a dynamic-state-dependent model. In this study, I developed a general fish's life-history model including three life-history states depend-ing on foraging activity, such as body mass, mass of reproductive tissue (i.e., gonadal development) and accumulated stress (i.e., cellular or physiological damage). I assumed the level of foraging activity maximises reproductive success-ultimately, fitness. The model predicts that growth rate, development of reproductive tissues and damage accumulation are greater in higher temperature whereas higher human aquatic activity rapidly reduced the growth rate and development of reproductive tissue and increased damage accumulation. While higher foraging activity in higher temperature is less affected by human aquatic activity, the foraging activity in lower temperature rapidly declined with human aquatic activity. Moreover, lower survival rate in higher temperature or human aquatic activity was independent on mortality rate due to human aquatic activity or mortality rate when foraging activity, respectively. However, the survival rate in lower temperature or human aquatic activity was dependent on these mortality rates. My findings suggest that including of early life-history traits in relation to climate-change and human aquatic activity on the analysis may improve conservation plan and health assessment in aquatic ecosystem.

환경상태는 생물이 적합도 (번식성공 또는 생존율)를 극대화하기 위해서 초기생활사의 변화를 초래할 수 있다. 본 연구에서는 온도변화와 온도에 따른 수상레저활동 인구변화가 어류의 초기 생활사 특성, 즉 체세포 성장(성장속도), 번식세포 (생식소) 발달 그리고 누적스트레스의 회복과정과 어떠한 관계가 있는지를 동적상태의존모델을 이용하여 분석하였다. 우선 어류의 초기 생활사 특성이 취식행동에 영향을 받는다고 가정하였고, 이러한 관계를 고려하여 어류의 일반 생활사 모델을 개발하였다. 모델은 성장속도와 번식세포(생식소)의 발달이 온도가 상승함에 (단, 성장속도를 감소시키는 임계온도보다는 낮은) 따라 빨라졌으며, 또한 체내에 누적되는 스트레스도 함께 증가하였다. 흥미롭게도 온도가 높을 때에는 수상레저활동 인구의 증가는 성장속도와 생식소의 발달을 느리게 했지만, 스트레스의 누적은 가속화시켰다. 그러나 온도가 낮을 때에는 초기 생활사에 대한 수상레저활동 인구의 영향이 상대적으로 낮았다. 또한 최적취식행동은 높은 온도에서는 수상레저활동 인구의 변화에 관계없이 항상 높았지만, 낮은 온도에서는 수상레저활동 인구가 증가할수록 급격히 감소하였다. 초기성장기간 동안의 생존율은 온도가 낮아지고 수상레저활동 인구가 적을 때에는 취식행동이나 인간 활동에 따른 어류의 사망률 증감이 생존률 변이에 영향을 주었다. 반대로 온도가 높아지고 수상레저활동 인구가 많을 때의 생존율은 취식행동이나 사망률에 관계없이 항상 낮았다. 끝으로 본 연구를 통해 기후변화와 수상레저활동 인구변화와 관련된 어류의 초기 생활사를 수생태계 보전전략이나 건강성 평가분석에 포함시키는 것은 분석의 정확성과 정밀성을 향상시킬 수 있을 것이라 사료된다.

Keywords

References

  1. Arrhenius, S. 1889. Uber die reaktionsgeschwindigkeit bei der inversion von rohrzucker durcj Sauren. Zeitschrift fur Physik Chemique 4: 226-248.
  2. Beamish, F.W.H. 1978. Swmming capacity, p. 101-187. In: Fish physiology, volume VII. Locomotion (Hoar, W.S. and D.J. Randall, eds.). Academic Press, New York.
  3. Beauchamp, D.A., D.J. Stewart and G.L. Thomas. 1989. Corroboration of a bioenergetics model for sockeye-salmon. Transactions of the American Fisheries Society 118: 597-607. https://doi.org/10.1577/1548-8659(1989)118<0597:COABMF>2.3.CO;2
  4. Bellwood, D.R., A.S. Hoey and T.P. Hughes. 2012. Human activity selectively impacts the ecosystem roles of parrotfishes on coral reefs. Proceedings of the Royal Society B-Biological Sciences 279: 1621-1629.
  5. Blair, J.M., I. Ostrovsky, B.J. Hicks, R.J. Pitkethley and P. Scholes. 2013. Growth of rainbow trout (Oncorhynchus mykiss) in warm-temperature lakes: implications for environmental change. Canadian Journal of Fisheries and Aquatic Sciences 70: 815-823. https://doi.org/10.1139/cjfas-2012-0409
  6. Boggs, C.L. 1992. Resource-allocation - exploring connections between foraging and life-history. Functional Ecology 6: 508-518. https://doi.org/10.2307/2390047
  7. Boltzmann, L. 1872. Weitere studien uber das warmegleichgewicht unter gasmolekulen. Sitzungsberichte der mathematisch-naturwissenschlaftlichen Classe der kaiserlichen Akademic der Wissenschaften Wien 66: 275- 370.
  8. Bone, Q. and R.H. Moore. 2008. Biology of fishes. Taylor & Francls Groups, Abingdon.
  9. Brander, K.M. 2007. Global fish production and climate change. Proceedings of the National Academy of Sciences of the United States of America 104: 19709-19714.
  10. Brett, J.R. and T.D.D. Groves. 1979. Physiological energetics, p. 162-259. In: Fish physiology (Hoar, W.S., D.J. Randall and J.R. Brett, eds.). Academic Press, New York.
  11. Brown, J.H., J.F. Gillooly, A.P. Allen, V.M. Savage and G.B. West. 2004. Toward a metabolic theory of ecology. Ecology 85: 1771-1789. https://doi.org/10.1890/03-9000
  12. Bujosa, A. and J. Rossello. 2013. Climate change and summer mass tourism: the case of Spanish domestic tourism. Climatic Change 117: 363-375. https://doi.org/10.1007/s10584-012-0554-x
  13. Connell, S.D. 1998. Effects of predators on growth, mortality and abundance of a juvenile reef-fish: evidence from manipulations of predator and prey abundance. Marine Ecology Progress Series 169: 251-261. https://doi.org/10.3354/meps169251
  14. Clark, C.W. and M. Mangel. 2000. Dynamic state variable models in ecology: methods and applications. Oxford University Press, Oxford, UK.
  15. Clark, J.S., D.M. Bell, M. Kwit, A. Stine, B. Vierra and K. Zhu. 2012. Individual-scale inference to anticipate climate- change vulnerability of biodiversity. Philosophical Transactions of the Royal Society B-Biological Sciences 367: 236-246. https://doi.org/10.1098/rstb.2011.0183
  16. De Jong, G. and A.J. van Noordwijk. 1992. Acquisition and allocation of resources - genetic (co)variances, selection, and life histories. American Naturalist 139: 749-770. https://doi.org/10.1086/285356
  17. Fraser, N.H.C., N.B. Metcalfe and J.E. Thorpe. 1993. Temperature- dependent switch between diurnal and nocturnal foraging in salmon. Proceedings of the Royal Society B-Biological Sciences 252: 135-139.
  18. Hilborn, R. and M. Mangel. 1997. The ecological detective: confronting models with data. Princeton University Press, Princeton, NJ.
  19. Kight, C.R. and J.P. Swaddle. 2011. How and why environmental noise impacts animals: an integrative, mechanistic review. Ecology Letters 14: 1052-1061. https://doi.org/10.1111/j.1461-0248.2011.01664.x
  20. Lee, W.-S. 2012a. Climate-change and individual life history. Ocean and Polar Research 34: 275-286. https://doi.org/10.4217/OPR.2012.34.3.275
  21. Lee, W.-S. 2012b. Effect of environmental stressors in stopover sites on the survival and re-migration using a dynamic-state-dependent model. Korean Journal of Ornithology 19: 277-291.
  22. Lee, W.-S., N.B. Metcalfe, P. Monaghan and M. Mangel. 2011. A comparison of dynamic-state-dependent models of the trade-off between growth, damage, and reproduction. The American Naturalist 178: 774-786. https://doi.org/10.1086/662671
  23. Lee, W.-S., P. Monaghan and N.B. Metcalfe. 2010. The tradeoff between growth rate and locomotor performance varies with perceived time until breeding. The Journal of Experimental Biology 213: 3289-3298. https://doi.org/10.1242/jeb.043083
  24. Lee, W.-S., P. Monaghan and N.B. Metcalfe. 2012. The pattern of early growth trajectories affects adult breeding performance. Ecology 93: 902-912. https://doi.org/10.1890/11-0890.1
  25. Lee, W.-S., P. Monaghan and N.B. Metcalfe. 2013. Experimental demonstration of the growth rate-lifespan tradeoff. Proceedings of the Royal Society B: Biological Sciences 280: 20122370.
  26. Mangel, M. 1994. Climate change and salmonid life history variation. Deep-Sea Research Part II-Topical Studies in Oceanography 41: 75-106. https://doi.org/10.1016/0967-0645(94)90063-9
  27. Mangel, M. 2006. The theoretical biologist's toolbox: quantitative methods for ecology and evolutionary biology. Cambridge University Press, Cambridge, UK.
  28. Mangel, M. 2008. Environment, damage and senescence: modeling the life history consequences of variable stress and caloric intake. Functional Ecology 22: 422-430. https://doi.org/10.1111/j.1365-2435.2008.01410.x
  29. Mangel, M. and C.W. Clark. 1988. Dynamic modeling in behavioral ecology. Princeton University Press, Princeton, NJ.
  30. Mangel, M. and S.B. Munch. 2005. A life-history perspective on short- and long-term consequences of compensatory growth. American Naturalist 166: E155-E176. https://doi.org/10.1086/444439
  31. Matheworks, T. 2012. Matlab 2012b. Matheworks. Natick, MA.
  32. Metcalfe, N.B., C.D. Bull and M. Mangel. 2002. Seasonal variation in catch-up growth reveals state-dependent somatic allocations in salmon. Evolutionary Ecology Research 4: 871-881.
  33. Metcalfe, N.B. and P. Monaghan. 2001. Compensation for a bad start: grow now, pay later? Trends in Ecology and Evolution 16: 254-260. https://doi.org/10.1016/S0169-5347(01)02124-3
  34. Metcalfe, N.B. and P. Monaghan. 2003. Growth versus lifespan: perspectives from evolutionary ecology. Experimental Gerontology 38: 935-940. https://doi.org/10.1016/S0531-5565(03)00159-1
  35. Microsoft. 2010. Microsoft Visual Basic 2010. Microsoft Cooperation. Redmond, WA.
  36. Mims, M.C. and J.D. Olden. 2012. Life history theory predicts fish assemblage response to hydrologic regimes. Ecology 93: 35-45. https://doi.org/10.1890/11-0370.1
  37. Muhly, T.B., C. Semeniuk, A. Massolo, L. Hickman and M. Musiani. 2011. Human activity helps prey win the predator- prey space race. PLoS One 6: e17050. https://doi.org/10.1371/journal.pone.0017050
  38. Munch, S.B. and M. Mangel. 2006. Evaluation of mortality trajectories in evolutionary biodemography. Proceedings of the National Academy of Sciences of the United States of America 103: 16604-16607.
  39. Perry, A.L., P.J. Low, J.R. Ellis and J.D. Reynolds. 2005. Climate change and distribution shifts in marine fishes. Science 308: 1912-1915. https://doi.org/10.1126/science.1111322
  40. Peter, R.E. 1979. The brain and feeding behavior, p. 121- 159. In: Fish physiology - bioenergetics and growth (Hoar, W.S., D.J. Randall and J.R. Brett, eds.). Academic Press, New York.
  41. Pike, T.W., J.D. Blount, B. Bjerkeng, J. Lindström and N.B. Metcalfe. 2007. Carotenoids, oxidative stress and female mating preference for longer lived males. Proceedings of the Royal Society B-Biological Sciences 274: 1591-1596.
  42. Popper, A.N. and M.C. Hastings. 2009. The effects of humangenerated sound on fish. Integrative Zoology 4: 43-52. https://doi.org/10.1111/j.1749-4877.2008.00134.x
  43. Rand, P.S., D.J. Stewart, P.W. Seelbach, M.L. Jones and L.R. Wedge. 1993. Modeling steelhead population energetics in lakes Michigan and Ontario. Transactions of the American Fisheries Society 122: 977-1001. https://doi.org/10.1577/1548-8659(1993)122<0977:MSPEIL>2.3.CO;2
  44. Rapport, D.J., R. Costanza and A.J. McMichael. 1998. Assessing ecosystem health. Trends in Ecology and Evolution 13: 397-402. https://doi.org/10.1016/S0169-5347(98)01449-9
  45. Roff, D.A. 2002. Life history evolution. Sinauer, Sunderland, UK.
  46. Scheuerell, M.D. and D.E. Schindler. 2004. Changes in the spatial distribution of fishes in lakes along a residential development gradient. Ecosystems 7: 98-106. https://doi.org/10.1007/s10021-003-0214-0
  47. Schmitt, W., E. Bruns, M. Dollinger and P. Sowig. 2013. Mechanistic TK/TD-model simulating the effect of growth inhibitors on Lemma populations. Ecological Modelling 255: 1-10. https://doi.org/10.1016/j.ecolmodel.2013.01.017
  48. Schreiber, E.A. and J. Burger. 2001. Biology of marine birds. CRC Press, New York.
  49. Slabbekoorn, H., N. Bouton, I. van Opzeeland, A. Coers, C. ten Cate and A.N. Popper. 2010. A noisy spring: the impact of globally rising underwater sound levels on fish. Trends in Ecology and Evolution 25: 419-427. https://doi.org/10.1016/j.tree.2010.04.005
  50. Stewart, D.J., D. Weininger, D.V. Rottiers and T.A. Edsall. 1983. An energetics model for lake trout, Salvelinus namaycush: application to the Lake Michigan population. Canadian Journal of Fisheries and Aquatic Sciences 40: 681-698. https://doi.org/10.1139/f83-091
  51. Thomas, G., H. Quoss, J. Hartmann and R. Eckmann. 2009. Human-induced changes in the reproductive traits of Lake Constance common whitefish (Coregonus lavaretus). Journal of Evolutionary Biology 22: 88-96. https://doi.org/10.1111/j.1420-9101.2008.01622.x
  52. Thresher, R.E., J.A. Koslow, A.K. Morison and D.C. Smith. 2007. Depth-mediated reversal of the effects of climate change on long-term growth rates of exploited marine fish. Proceedings of the National Academy of Sciences of the United States of America 104: 7461-7465.
  53. Urban, M.C., J.J. Tewksbury and K.S. Sheldon. 2012. On a collision course: competition and dispersal differences create no-analogue communities and cause extinctions during climate change. Proceedings of the Royal Society B-Biological Sciences 279: 2072-2080.
  54. Vinther, M. and M. Eero. 2013. Quantifying relative fishing impact on fish populations based on spatio-temporal overlap of fishing effort and stock density. ICES Journal of Marine Science 70: 618-627. https://doi.org/10.1093/icesjms/fst001
  55. West, G.B., J.H. Brown and B.J. Enquist. 1997. A general model for the origin of allometric scaling laws in biology. Science 276: 122-126. https://doi.org/10.1126/science.276.5309.122
  56. Wootton, R.J. 1999. Ecology of teleost fishes. Springer, London, UK.
  57. Wysocki, L.E., J.P. Dittami and F. Ladich. 2006. Ship noise and cortisol secretion in European freshwater fishes. Biological Conservation 128: 501-508. https://doi.org/10.1016/j.biocon.2005.10.020