DOI QR코드

DOI QR Code

Characteristics of NbN Films Deposited on AISI 304 Using Inductively Coupled Plasma Assisted DC Magnetron Sputtering Method

  • Jun, Shinhee (School of Materials Science and Engineering, University of Ulsan) ;
  • Kim, Junho (Advanced Hybrid Production Technology Center, Korea Institute of Industrial Technology) ;
  • Kim, Sunkwang (School of Materials Science and Engineering, University of Ulsan) ;
  • You, Yong Zoo (School of Materials Science and Engineering, University of Ulsan) ;
  • Cha, Byungchul (Advanced Hybrid Production Technology Center, Korea Institute of Industrial Technology)
  • Received : 2013.10.02
  • Accepted : 2013.10.25
  • Published : 2013.10.30

Abstract

Niobium nitride (NbN) films were deposited on AISI 304 stainless steels by inductively coupled plasma (ICP) assisted dc magnetron sputtering method at different ICP powers, and the effects of ICP power on the phase formation, mechanical and chemical properties of the films were investigated. X-ray diffraction analysis (XRD) and field emission scanning electron microscopy (FESEM) were used to analyze the crystal structure and micro-knoop hardness was used to measure the hardness of the films. Also, 3-D mechanical profiler and a ball-on-disk wear tester were used to measure the thickness of the films and to estimate wear characteristics, respectively. The thickness of the films decreased but their hardness increased with increasing ICP power, and it was confirmed that only cubic ${\delta}$-NbN(200) remained at high ICP power. At lower ICP powers, a mixture of the hexagonal ${\delta}^{\prime}$-NbN and cubic ${\delta}$-NbN phases was obtained in the films and the hardness decreased. The corrosion potential value increased gradually with increasing ICP power, but the changes of ICP power did not significantly influence the overall corrosion resistance.

Keywords

References

  1. Z. Han, X. Hu, J. Tian, G. Li, G. Mingyuan, Surf. Coat. Technol., 179 (2004) 188. https://doi.org/10.1016/S0257-8972(03)00848-X
  2. J. J. Olaya, S. E. Rodil, S. Muhl, Thin Solid Films., 516 (2008) 8319. https://doi.org/10.1016/j.tsf.2008.03.043
  3. D. B. Lewis, D. Reitz, C. Wustefeld, R. Ohser-Wiedemann, H. Oettel, A. P. Ehiasarian, P. Eh. Hovsepian, Thin Solid Films, 503 (2006) 133. https://doi.org/10.1016/j.tsf.2005.08.369
  4. P. E. Hovsepian, D. B. Lewis, W.-D. Muunz, A. Rouzaud, P. Juliet, Surf. Coat. Technol., 116-119 (1999) 727. https://doi.org/10.1016/S0257-8972(99)00182-6
  5. V. N. Zhitomirsky, I. Grimberg, L. Rapoport, N. A. Travitzky, R. L. Boxman, S. Goldsmith, B. Z. Weiss, Surf. Coat. Technol., 120-121 (1999) 219. https://doi.org/10.1016/S0257-8972(99)00382-5
  6. A. Bendavid, P. J. Martin, T. J. Kinder, E. W. Preston, Surf. Coat. Technol., 163-164 (2003) 169. https://doi.org/10.1016/S0257-8972(02)00601-1
  7. M. Benkahoul, E. Martinez, A. Karimi, R. Sanjines, F. Levy, Surf. Coat. Technol., 180-181 (2004) 178. https://doi.org/10.1016/j.surfcoat.2003.10.040
  8. H. D. Na, H. S. Park, D. H. Jung, G. R. Lee, J. H. Joo, J. J. Lee, Surf. Coat. Technol., 169-170 (2003) 41. https://doi.org/10.1016/S0257-8972(03)00071-9
  9. Rointan F. Bunshah, Handbook of Deposition Technologies for Films and Coatings, NOYES PUBLICATIONS, New Jersey, (1994) 194.
  10. J.-J. Lee, J. Joo, Surf. Coat. Technol., 169-170 (2003) 353. https://doi.org/10.1016/S0257-8972(03)00112-9
  11. B. M. Koo, S. J. Jung, Y. H. Han, J. J. Lee, J. H. Joo, J. Kor. Inst. Surf. Eng., 37 (2004) 146.
  12. K.-C. Yoo, B.-H. Park, J.-H. Joo, J.-J. Lee, J. Kor. Inst. Surf. Eng., 37 (2004) 164.
  13. Y.-K. Kim, J. Kor. Inst. Surf. Eng., 43 (2010) 91. https://doi.org/10.5695/JKISE.2010.43.2.091
  14. S.-Y. Chun, J. Kor. Inst. Surf. Eng., 46 (2013) 55. https://doi.org/10.5695/JKISE.2013.46.2.055
  15. H. D. Na, H. S. Park, D. H. Jung, G. R. Lee, J. G. Joo, J. J. Lee, Surf. Coat. Technol., 167-170 (2003) 41.
  16. D.-H. Seo, S.-Y. Chun, J. Kor. Inst. Surf. Eng., 45 (2012) 123. https://doi.org/10.5695/JKISE.2012.45.3.123
  17. Denny A. Jones, Principles and Prevention of Corrosion, 2nd ed., Prentice Hall, New Jersey, (2011) 116.
  18. Robert G. Kelly, John R. Scully, David W. Shoesmith, Rudolph G. Buchheit, Electrochemical Techniques in Corrosion Science and Engineering, Marcel Dekker, Inc., New York, (2003) 55.

Cited by

  1. Crystal Structure, Microstructure and Mechanical Properties of NbN Coatings Deposited by Asymmetric Bipolar Pulsed DC Sputtering vol.54, pp.1, 2017, https://doi.org/10.4191/kcers.2017.54.1.02
  2. Plasma Uniformity Analysis of Inductively Coupled Plasma Assisted Magnetron Sputtering by a 2D Voltage Probe Array vol.23, pp.4, 2014, https://doi.org/10.5757/ASCT.2014.23.4.161
  3. Effects of Negative Bias Voltage and Ratio of Nitrogen and Argon on the Structure and Properties of NbN Coatings Deposited by HiPIMS Deposition System vol.8, pp.1, 2017, https://doi.org/10.3390/coatings8010010
  4. A Comparative Study of NbN Coatings Deposited by DC and Pulsed DC Asymmetric Bipolar Magnetron Sputtering vol.48, pp.4, 2015, https://doi.org/10.5695/JKISE.2015.48.4.136