DOI QR코드

DOI QR Code

Mineralogical and Geochemical Changes During the Reaction of Cr(VI) with Organic Carbon

6가 크롬과 유기탄소와의 반응에 따른 광물학적 지구화학적 변화

  • Kim, Yeongkyoo (Department of Geology, Kyungpook National University) ;
  • Park, Young-Gyu (Ocean Circulation and Climate Research Division, Korea Institute of Ocean Science and Technology)
  • 김영규 (경북대학교 지질학과) ;
  • 박영규 (한국해양과학기술원 해양순환기후연구본부)
  • Received : 2013.07.20
  • Accepted : 2013.09.17
  • Published : 2013.09.30

Abstract

A column experiment was carried out to study the reaction of Cr(VI) with organic carbon. Chemical analysis for the effluent collected at different times after the reaction of Cr(VI) with organic carbon in compost and SEM observation for the solid samples remaining after the reaction were conducted. Cr(VI) supplied to the column was not detected in the effluent from column at initial stage, but the concentration of Cr(VI) increased abruptly and maintained the initial supplied concentration (20 mg/kg), indicating that Cr(VI) was effectively removed from the solution at the first state. In general, the concentrations of cations and anions with the exception of $PO_4$ increased and decreased again. Considering that most of these ions were not detected or showed very low concentration, these ions are considered to originate from the organic carbon in the column. SEM observation showed that Cr was coprecipitated with Fe on the surface of organic carbon with small amount of other metals such as Mn, No, and Co. This indicated that on the reduction condition on the organic carbon, Cr(VI) was reduced to $Cr(OH)_3$ and coprecipitated with $Fe(OH)_3$, and that Fe is very important in the precipitation of Cr. After the soluble Fe and Mn are not dissolved any more, $Cr(OH)_3$ is not precipitated. Different from other ions, the concentrations of $PO_4$ decreased and increased, which was thought to be the result of the release of $PO_4$ from organic carbon and sorption on the precipitates. After the maximum sorption on the precipitates and no further release of Fe, the concentration of $PO_4$ returns to its original value measured for the ones released from the organic carbon.

유기탄소와 Cr(VI)와의 반응을 연구하여 위하여 컬럼 실험을 실시하였다. 컬럼 실험은 거름토의 유기탄소와 수용액 속의 Cr(VI)와의 반응 후 시간별로 채취한 컬럼의 유출수와 반응 후 컬럼에 남은 고체물질에 대하여 화학분석과 SEM 관찰을 실시하였다. 컬럼에 공급된 Cr(VI)은 초기 유출수에서는 검출되지 않다가 약 8 PV (pore volume) 후 급격한 농도 증가를 보이며 공급수의 농도(20 mg/kg)까지 높아져 본 실험 조건에서 초기에 유기탄소와 Cr(VI)과의 반응에 의하여 일정 기간 동안 제거됨을 보인다. 전반적으로 유출수에서 측정된 양이온과 음이온의 농도는 $PO_4$를 제외하고 초기에 증가하였다가 시간이 지나면서 감소하는 경향을 보인다. 대부분의 이온들이 공급수에는 검출되진 않았거나 매우 낮은 농도임을 감안하면 이 이온들은 주로 유기탄소에서 유출된 것으로 판단된다. SEM 관찰결과 Cr은 유기탄소 표면에 Fe와 함께 공침되었음을 보이고 일부 침전물에 Mn, Ni, Co 등과 같은 금속들이 함께 함유되어있음을 보여준다. 이는 유기탄소 표면의 환원환경에서 Cr(VI)가 환원이 되어 $Cr(OH)_3$로 침전되면서 $Fe(OH)_3$와 같이 공침하였음을 보여주며 Fe의 존재가 Cr의 침전에 있어서 매우 중요함을 지시한다. 추후 용해성 Fe와 Mn과 같은 원소들이 더 이상 용출되지 않으면 Cr(VI)는 더 이상 침전 반응으로 제거되지 않는다. 다른 이온들과 달리 $PO_4$의 경우 초기 유출수에서 감소를 보이고 추후에 농도가 증가하는데 이는 유기탄소에 포함되어 있던 $PO_4$가 유출된 후에 Cr과 Fe의 침전물에 효과적으로 흡착이 되고 침전물이 더 이상 생성되지 않게 되면 원래 유기탄소로부터 용해되어 나온 $PO_4$의 농도로 회귀되어 일정한 값을 보이는 것으로 생각된다.

Keywords

References

  1. Acar, F.N. and Malkoc, E. (2004) The removal of chromium(VI) from aqueous solutions by FagusorientalisL.. Bioresource Technology, 94, 13-15. https://doi.org/10.1016/j.biortech.2003.10.032
  2. Banks, M.K., Schwab, A.P., and Carlos Henderson, C. (2006) Leaching and reduction of chromium in soil as affected by soil organic content and plants. Chemosphere, 62, 255-264. https://doi.org/10.1016/j.chemosphere.2005.05.020
  3. Bhattacharyya, P., Chakraborty, A., Chkrabarti, K., Tripathy, S., and Powell, M.A. (2005) Chromium uptake by rice and accumulation in soil amended with municipal solid waste compost. Chemosphere, 60, 1481-1486. https://doi.org/10.1016/j.chemosphere.2005.02.024
  4. Bishnoi, N.R., Najaj, M., Sharma, N., and Gupta, A. (2004) Adsorption of Cr(IV) on activated rice husk carbon and activated alumina. Bioresource Technology, 91, 305-307. https://doi.org/10.1016/S0960-8524(03)00204-9
  5. Boni, M.R. and Sbaffoni, S. (2009) The potential of compost-based biobarriers for Cr(VI) removal from contaminated groundwater: Column test. Journal of Hazardous Materials, 166, 1087-1095. https://doi.org/10.1016/j.jhazmat.2008.12.036
  6. Chirwa, E.M.N. and Wang, Y.T. (1997) Hexavanet chromium reduction by Bacillus sp. In a Packed- Bed Bioreactor. Envionmental Science & Technology, 31, 1446-1451. https://doi.org/10.1021/es9606900
  7. Chon, C.M., Ahn, J.S., Kim, K.Y., and Park, K.H. (2008) Evaluation of soil redox capacity using chromium oxidation-reduction reaction in volcanic ash soils in Jeju Island. Journal of the Mineralogica Society of Korea, 21, 161-175.
  8. Cimino, G., Passerini, A., and Toscano, G. (2000) Removal of toxic cations and Cr(VI) from aqueous solution by hazelnut shell. Water Research, 34, 2955-2962. https://doi.org/10.1016/S0043-1354(00)00048-8
  9. Ding, M., de JOng, B.H.W.S., Roosendaal, S.J., and Vredenberg, A. (2000) XPS studies on the electronic structure of bonding between solid and solutes: adsorption of arsenate, chromate, phosphate, $PB^{2+}$ , and $Zn^{2+}$ ions on amorphous black ferric oxyhydroxide. Geochmica et Cosmochimica Acta, 65, 1209-1219.
  10. Erdem, M., Altundogan, H.S., and Tumen, F. (2004) Removal of hexavalent chromium by using heat-activated bauxite. Minerals Engineering, 17, 1045-1-52. https://doi.org/10.1016/j.mineng.2004.04.013
  11. Garg, U.K., Kaur, M.P., Garg, V.K., and Sud, D. (2007) Removal of hexavalent chromium from aqueous solution by agricultural waste biomass. Journal of Hazardous Materials, 140, 60-68. https://doi.org/10.1016/j.jhazmat.2006.06.056
  12. Greenberg, A.E., Clesceri, L.S., and Eaton, A.D. (1992) Standard Methods for the Examination of Water and Wastewater, 18 th ed. American Public Health Association, Washington D.C.
  13. Hu, J., Lo, I.M.C., and Chen, G (2005) Removal and recovery of Cr(IV) from wastewater by maghemite nanoparticles. Water Research, 39, 4528-4536. https://doi.org/10.1016/j.watres.2005.05.051
  14. Hu, M.J., Wei, Y.L., Yang, Y.W., and Lee, J.F. (2003) Immobilization of Chromium(VI) with debris of aquatic plants. Bulletin of Environmental Contamination and Toxicology, 71, 840-847. https://doi.org/10.1007/s00128-003-0212-0
  15. Jeen, S.W., Blowes, D.W., and Gillham, R.W. (2008) Performance evaluation of granular iron for removing hexavalentt chromium under different geochemical conditions. Journal of Contaminant Hydrology, 95, 76-91. https://doi.org/10.1016/j.jconhyd.2007.07.012
  16. Jeen, S.W., Jambor, J.L., Blowes, D.W., and Gillham, R.W. (2007) Precipitates on granular iron in solutions containing calcium carbonate with trichloroethene and hexavalent chromium. Environmental Science & Technology, 41, 1989-1994. https://doi.org/10.1021/es0618393
  17. Kimbrough, D.E., Cohen, Y., Winer, A.M., Creelman, L., and Mabuni, C.A. (1999) Critical assessment of chromium in the environment. Critical Reviews in Environmental Science and Technology, 29, 1-46. https://doi.org/10.1080/10643389991259164
  18. Kobya, M. (2004) Removal of Cr(VI) from aqueous solutions by adsorption onto hazelnut shell activated carbon: kinetic and equilibrium studies. Bioresource Technology. 91, 317-321. https://doi.org/10.1016/j.biortech.2003.07.001
  19. Labora, F., Górriz, M.P., Bolea, E., and Castillo, J.R. (2007) Mobilization nad speciation of chrimium in compost: A mrthodological approach. Science of the Total Environment, 373, 383-390. https://doi.org/10.1016/j.scitotenv.2006.10.047
  20. Mohan, D. and Pittman Jr., C.U. (2005) Activated carbons and low cost adsorbents for remediation of tri and hexavalent chromium from water. Journal of Hazardous Materials, 137, 762-811.
  21. Patterson, R. and Fendorf, S. (1997) Reduction of hexavalent chromium by amorphous iron sulfide, Environmental Science & Technology, 31, 2039-2044. https://doi.org/10.1021/es960836v
  22. Persson, P., Nilson, N., and Sjoberg, S. (1996) Structure and bonding of orthophosphate ions at the iron oxdie-aqueous surface. Journal of Colloid and Interface Science, 177, 263-175. https://doi.org/10.1006/jcis.1996.0030
  23. Potgieter, J.H., Potgieter-Vermaak, S.S., and Kalibantonga, P.D. (2006) Heavy metals removal from solution by palygorskite clay. Minerals Engineering. 19 463-470. https://doi.org/10.1016/j.mineng.2005.07.004
  24. Pradhan, J., Das, S.N., and Thakur, R.S. (1999) Adsorption of hexavalent chromium from aqueous soulution by using activated red mud. Journal of Colloid and Interface Science, 217, 137-141. https://doi.org/10.1006/jcis.1999.6288
  25. Puls, R.W., Pul, C.J., and Powell, R.W. (1999) The application of insitu permeable reactive (zero-valentiron) barrier technology for the remediation of chromate-contaminated groundwater: a field test. Applied Geochemistry, 14, 989-1000. https://doi.org/10.1016/S0883-2927(99)00010-4
  26. Rao, M., Parwate, A.V., and Bhole, A.G. (2002) Removal of $Cr^{6+}$ and $Ni^{2+}$ from aqueous solution using bagasse and fly ash. Waste Management, 22, 821-830. https://doi.org/10.1016/S0956-053X(02)00011-9
  27. Sharma, D.C. and Forster, C.F. (1995) Column studies into the adsorption of chromium(VI) using sphagnum moss peat. Biosource Technolgy, 52, 261-267. https://doi.org/10.1016/0960-8524(95)00035-D
  28. Tel, H., Alta, Y., and Taner, M.S. (2004) Adsorption characteristics and separation of Cr(III) and Cr(VI) on hydrous titanium(IV) oxide. Journal of Hazardous Materials, 112, 225-231. https://doi.org/10.1016/j.jhazmat.2004.05.025
  29. Zhaohui, L., Jones, H.K., Bowman, R.S., and Helferich, R. (1999) Enhanced reduction of chromate and PCE by pelletized surface-modified zeolite/zerovanet iron. Environmental Science & Technology, 33, 4326-4330. https://doi.org/10.1021/es990334s

Cited by

  1. 3종의 탄소계 흡착제를 이용한 크롬 제거 특성 vol.19, pp.2, 2013, https://doi.org/10.17663/jwr.2017.19.2.246