DOI QR코드

DOI QR Code

A Study of Physicochemical and Mineralogical Properties of Heavy Metal Contaminated-Soil Particles from the Kangwon and Donghae Mines

강원광산과 동해광산주변 중금속 함유 토양입자의 이화학적·광물학적 특성연구

  • Lee, Choong Hyun (Department of Earth & Environmental Sciences, Korea University) ;
  • Kim, YoungJae (Department of Earth & Environmental Sciences, Korea University) ;
  • Lee, Seon Yong (Department of Earth & Environmental Sciences, Korea University) ;
  • Park, Chan Oh (Korea Resources Corporation) ;
  • Sung, Yoo Hyun (Korea Resources Corporation) ;
  • Lee, Jai-Young (Department of Environmental Engineering, The University of Seoul) ;
  • Choi, Ui Kyu (Institute of Mine Reclamation Technology, Mine Reclamation Corporation) ;
  • Lee, Young Jae (Department of Earth & Environmental Sciences, Korea University)
  • 이충현 (고려대학교 지구환경과학과) ;
  • 김영재 (고려대학교 지구환경과학과) ;
  • 이선용 (고려대학교 지구환경과학과) ;
  • 박찬오 (한국광물자원공사) ;
  • 성유현 (한국광물자원공사) ;
  • 이재영 (서울시립대학교 환경공학과) ;
  • 최의규 (한국광해관리공단 광해기술연구소) ;
  • 이영재 (고려대학교 지구환경과학과)
  • Received : 2013.09.17
  • Accepted : 2013.09.26
  • Published : 2013.09.30

Abstract

Soil samples collected at the Kangwon and Donghae mines were investigated for the characterization of heavy metals using physicochemical and mineralogical properties. Arsenic (As) concentrations of soil samples sieved above 18 mesh and under 325 mesh at the Kangwon mine are 250.5 to 445.7 ppm, respectively. For soil samples sieved above 18 mesh at the Donghae mine, the concentrations of As, Pb, and Zn are 70.4, 1,055, and 781.9, while 117.7 ppm for As, 2,295 ppm for Pb, and 1,346 ppm for Zn are shown for the samples sieved under 325 mesh. XRD and SEM data indicated that the samples from the Kangwon mine included quartz, mica, albite, chlorite, magnetite, and amphibole while those from the Donghae mine contained quartz, mica, kaolinite, chlorite, amphibole, and rutile. SEM-EDS showed that magnetite found in the samples at the Kangwon mine was positively correlated with arsenic concentrations whereas ilmenite in the samples from the Donghae mine contained only small amount of As. Our results suggest that physicochemical and mineralogical characterization plays an important role in optimizing recovery treatments of soils contaminated in mine development areas.

국내 강원광산과 동해광산 주변 토양입자의 이화학적 광물학적 특성을 이용해 이들 광산주변내 토양 중금속 오염 원인을 규명하고자 하였다. 입도에 따른 중금속의 농도를 분석한 결과 강원광산의 경우 가장 큰 입경군인 10~18 mesh 구간에서 비소가 250.5 ppm, 가장 작은 325 mesh 이하 구간에서 445.7 ppm으로 나타났다. 동해광산의 경우에도 마찬가지로 10~18 mesh 구간에서 비소 70.4 ppm, 납 1,055 ppm, 아연 789.9 ppm으로 나타났으며 325 mesh 이하 구간에서 비소 117.7 ppm, 납 2,295 ppm, 아연 1,346 ppm으로 입도가 작아질수록 농집되는 경향을 보였다. 중금속과 토양 내 광물의 상호작용을 분석하기 위해 물리적 선별(자력, 부유선별) 후, 이들 시료에 대한 X-선 회절분석과 주사전자현미경 분석결과 강원광산 시료의 주 구성광물은 석영, 운모, 조장석, 녹니석, 자철석, 각섬석으로 확인되었으며 동해광산 시료에서는 석영, 운모, 고령석, 녹니석, 각섬석, 금홍석이 주 광물들로 나타났다. 강원광산의 자철석은 비소 농도와의 상관성이 매우 좋은 것으로 나타난 반면, 동해광산 시료에서는 티탄철석이 확인되었으며 미량의 비소를 포함하는 것으로 나타났다. 이 같은 결과들은 토양 내 광물의 이화학적 정보와 광물학적 특성 규명이 토양 오염원 형태와 이를 바탕으로 한 토양환경 오염처리에 매우 중요함을 시사하고 있다.

Keywords

References

  1. Appelo, C.A.J., Van Der Weiden, M.J.J., Tournassat, C. and Charlet, L. (2002) Surface Complexation of Ferrous Iron and Carbonate on Ferrihydrite and the Mobilization of Arsenic. Environmental Science & Technology, 36, 3096-3103. https://doi.org/10.1021/es010130n
  2. Bowell, R.J., Morley, N.H., and Din, V.K. (1994) Arsenic spedation in soil porewaters from the Ashanti Mine, Ghana. Applied Geochemistry, 9, 15-22. https://doi.org/10.1016/0883-2927(94)90048-5
  3. Buckley, A.N. and Walker, G.W. (1988) The Surface Composition Of Arsenopyrite Exposed To Oxidizing Environments. Applied Surface Science, 35, 227-240. https://doi.org/10.1016/0169-4332(88)90052-9
  4. Chakraborty, S., Wolthers, M., Chatterjee, D., and Charlet, L. (2007) Adsorption of arsenite and arsenate onto muscovite and biotite mica. Journal of Colloid and Interface Science, 309, 392-401. https://doi.org/10.1016/j.jcis.2006.10.014
  5. Dixit, S. and Hering, J.G. (2003) Comparison of Arsenic( V) and Arsenic(III) Sorption onto Iron Oxide Minerals: Implications for Arsenic Mobility. Environmental Science & Technology, 37, 4182-4189. https://doi.org/10.1021/es030309t
  6. Dermont, G., Bergeron, M., Mercier, G., and Richer- Lafleche, M. (2008) Soil washing for metal removal: A review of physical/chemical technologies and field applications. Journal of Hazardous Materials, 152, 1-31. https://doi.org/10.1016/j.jhazmat.2007.10.043
  7. Goldberg, S. and Johnston, C.T. (2001) Mechanisms of Arsenic Adsorption on Amorphous Oxides Evaluated Using Macroscopic Measurements, Vibrational Spectroscopy, and Surface Complexation Modeling. Journal of Colloid and Interface Science, 234, 204-216. https://doi.org/10.1006/jcis.2000.7295
  8. Hopenhayn, C. (2006) Arsenic in Drinking Water: Impact on Human Health. Elements, 2, 103-107. https://doi.org/10.2113/gselements.2.2.103
  9. Knight, R.D. and Henderson, P.J. (2006) Smelter dust in humus around Rouyn-Noranda, Québec, Geochemistry: Exploration. Environment, Analysis, 6, 203-214.
  10. Korte, N.E. and Fernando, Q. (1991) A review of ar senic (III) in groundwater. Critical Reviews in Environmental Control, 21, 1-39. https://doi.org/10.1080/10643389109388408
  11. Manning, B.A., Fendorf, S.E., and Goldberg, S. (1998) Surface Structures and Stability of Arsenic(III) on Goethite: Spectroscopic Evidence for Inner-Sphere Complexes, Environmental Science & Technology, 32, 2383-2388. https://doi.org/10.1021/es9802201
  12. Singh, M., Sharma, M., and Tobschall, H.J (2005) Weathering of the Ganga alluvial plain, northern India: implications from fluvial geochemistry of the Gomati River, Applied Geochemistry, 20, 1-21. https://doi.org/10.1016/j.apgeochem.2004.07.005
  13. Smedley, P.L. and Kinniburgh, D.G. (2002) A review of the source, behaviour and distribution of arsenic in natural waters, Applied Geochemistry, 17, 517-568. https://doi.org/10.1016/S0883-2927(02)00018-5
  14. Tessier. A., Campbell, P.G.C., and Bisson M. (1979) Sequential Extraction Procedure for the Speciation of Particulate Trace Metals, Analytical Chemistry, 51, 844-851. https://doi.org/10.1021/ac50043a017
  15. Van Damme A., Degryse F., Smolders E., Sarret G., Dewit J., Swennen R., and Manceau A. (2010) Zinc speciation in mining and smelter contaminated overbank sediments by EXAFS spectroscopy, Geochimica et Cosmochimica Acta, 74, 3707-3720. https://doi.org/10.1016/j.gca.2010.03.032
  16. Walker, S.R. and Jamieson, H.E. (2005) The speciation of arsenic in iron oxides in mine wastes from the giant gold mine, N.W.T.: Application of synchrotron micro-XRD and micro-XANES at the grain scale, The Canadian Mineralogist, 43, 1205-1224. https://doi.org/10.2113/gscanmin.43.4.1205

Cited by

  1. A Study on the Removal Efficiency of Heavy Metals in Daenam Mine Agricultural Soil Using Heavy metal Properties by Physical separation vol.18, pp.5, 2013, https://doi.org/10.7857/JSGE.2013.18.5.046
  2. Evaluation of Purification Efficiency of Passive Treatment Systems for Acid Mine Drainage and Characterization of Precipitates in Ilwal Coal Mine vol.27, pp.2, 2014, https://doi.org/10.9727/jmsk.2014.27.2.97
  3. Study on Soil Extraction Methods for Contamination Assessment of Heavy Metals in Soil vol.57, pp.5, 2013, https://doi.org/10.32390/ksmer.2020.57.5.471