DOI QR코드

DOI QR Code

Improvement of Mechanical and Interfacial Properties of Carbon Fiber/Epoxy Composites by Adding Nano SiC Fillers

나노 SiC 입자의 형상에 따른 탄소섬유 강화 에폭시 복합재료의 기계적 및 계면 물성 변화 관찰

  • Kwon, Dong-Jun (Department of Materials Engineering and Conversion Technology, Engineering Research Institute, Gyeongsang National University) ;
  • Wang, Zuo-Jia (Department of Materials Engineering and Conversion Technology, Engineering Research Institute, Gyeongsang National University) ;
  • Kim, Je-Jun (Advanced Composites Materials R&D Center) ;
  • Jang, Key-Wook (Advanced Composites Materials R&D Center) ;
  • Park, Joung-Man (Department of Materials Engineering and Conversion Technology, Engineering Research Institute, Gyeongsang National University)
  • 권동준 (경상대학교 나노신소재융합공학과, 공학연구원) ;
  • 왕작가 (경상대학교 나노신소재융합공학과, 공학연구원) ;
  • 김제준 ((주)티비카본 복합신소재연구소) ;
  • 장기욱 ((주)티비카본 복합신소재연구소) ;
  • 박종만 (경상대학교 나노신소재융합공학과, 공학연구원)
  • Received : 2013.05.22
  • Accepted : 2013.06.11
  • Published : 2013.06.30

Abstract

Epoxy matrix based composites were fabricated by adding SiC nano fillers. The interfacial properties of composites were varied with different shapes of SiC nano fillers. To investigate the shape effects on the interfacial properties, beta and whisker type SiC nano fillers were used for this evaluation. The dispersion states of nano SiC-epoxy nanocomposites were evaluated by capacitance measurements. FE-SEM was used to observe the fracture surface of different structures of SiC-epoxy nanocomposites and to investigate for reinforcement effect. Interfacial properties between carbon fiber and SiC-epoxy nanocomposites were also evaluated by ILSS (interlaminar shear strength) and IFSS (interfacial shear strength) tests. The interfacial adhesion of beta type nanocomposites was better than whisker type.

SiC 나노입자를 이용하여 에폭시 복합재료를 제조할 수 있다. SiC 형상에 따른 영향으로 복합재료의 계면 물성이 변화된다. SiC의 형상에 따른 계면 상태의 변화를 관찰하기 위해 베타 형태, 위스커 형태의 SiC 나노입자를 사용하였다. 나노입자에 대한 분산도를 평가하기 위해 커패시턴스를 이용한 분산도 평가방법을 활용하였다. FE-SEM을 이용하여 SiC 나노입자의 활용에 따른 나노복합재료의 파단면을 관찰하여, 그 강화 효과를 비교 분석하였다. 탄소섬유와 SiC 나노입자가 함유된 에폭시를 이용한 복합재료에 계면 물성을 비교하기 위해 층간전단강도 평가법과 계면전단강도 평가법을 이용하였다. 복합재료의 계면 물성을 강화하기 위해서는 베타 형태의 SiC 나노입자를 활용할 경우가 위스커 입자를 이용한 경우보다 높은 계면 강도를 나타냈다.

Keywords

References

  1. T. Zhou, X. Wang, G. U. Mingyuan, and L. Xiaoheng, Polymer, 49, 4666 (2008). https://doi.org/10.1016/j.polymer.2008.08.023
  2. H. Alamri and I. M. Low, Mater. Des., 42, 214 (2012). https://doi.org/10.1016/j.matdes.2012.05.060
  3. M. Vlastimil, L. Yafei, J. Long, L. Huang, G. S. Martynkova, and V. Toma, Tribol. Int., 43, 144 (2010). https://doi.org/10.1016/j.triboint.2009.05.007
  4. J. Magnant, L. Maille, R. Pailler, and J. C. Ichard, J. European Ceram. Soc., 32, 4497 (2012). https://doi.org/10.1016/j.jeurceramsoc.2012.06.009
  5. J. Xiaolong, L. Gang, L. Baiyang, L. Yuming, G. Yang, and X. Yang, Compos. Part A, 48, 101 (2013). https://doi.org/10.1016/j.compositesa.2013.01.001
  6. J. M. Park, Z. J. Wang, J. H. Jang, N. J. R. Gnidakoung, W. I. Lee, J. G. Park, and K. L. DeVries, Compos. Part A, 40, 1722 (2009). https://doi.org/10.1016/j.compositesa.2009.08.006
  7. S. J. Park and Y. S. Jang, J. Colloid Interface Sci., 237, 91 (2001). https://doi.org/10.1006/jcis.2001.7441
  8. M. H. Choi, B. H. Jeon, and I. J. Chung, Polymer, 41, 3243 (2000). https://doi.org/10.1016/S0032-3861(99)00532-7
  9. S. S. Kim, D. C. Park, and D. G. Lee, Compos. Struct., 66, 359 (2004). https://doi.org/10.1016/j.compstruct.2004.04.057
  10. Z. J. Wang, N. J. R. Gnidakoung, M. S. Kim, J. M. Park, and M. G. Um, J. Adhesion and Interface, 10, 162 (2009).
  11. L. C. S. Nunes, F. W. R. Dias, and H. S. da Costa Mattos, Polym. Test, 30, 791(2011). https://doi.org/10.1016/j.polymertesting.2011.07.004
  12. R. Rajkiran and D. R. Paul, Polymer, 52, 5595 (2011). https://doi.org/10.1016/j.polymer.2011.10.002
  13. J. Gangchang, Q. Shengru, D. Shuangming, H. Dong, and L. Mei, Mater. Sci. Eng. A, 483, 123 (2008).
  14. T. Schuller, W. Beckert, B. Lauke, C. Ageorges, and K. Friedrich, Compos. Part A, 31, 661(2000). https://doi.org/10.1016/S1359-835X(00)00034-8
  15. D. T. Horn, Basic Electronics Thoery with Projects and Experiments, 4th ed, McGraw-Hill, New York, U.S.A.
  16. M. S. Hong, K. M. Bae, W. K. Choi, H. S. Lee, S. J. Park, K. H. An, and B. J. Kim, Chem. Eng. J., 23, 313 (2012).
  17. G. Jung, C. W. Nah, M. K. Seo, J. H. Byun, K. H. Lee, and S. J. Park, Polymer (Korea), 36, 612 (2012).
  18. Z. J. Wang, D. J. Kwon, G. Y. Gu, J. K. Park, W. I. Lee, and J. M. Park, J. Adhesion and Interface, 11, 149 (2010).

Cited by

  1. Impact behavior on temperature effect of nano composite materials vol.51, pp.4, 2015, https://doi.org/10.3796/KSFT.2015.51.4.561
  2. Impact fracture behavior on particle volume fraction of nano silica composite materials vol.51, pp.3, 2015, https://doi.org/10.3796/KSFT.2015.51.3.454
  3. Evaluation of Fiber Arrangement Condition of CF/PP Composites Using Electrical Resistance Measurement and Wettability vol.17, pp.1, 2016, https://doi.org/10.17702/jai.2016.17.1.15
  4. Improvement of Interfacial Adhesion of Incorporated Halloysite-Nanotubes in Fiber-Reinforced Epoxy-Based Composites vol.7, pp.5, 2017, https://doi.org/10.3390/app7050441
  5. Interfacial properties and thermal aging of glass fiber/epoxy composites reinforced with SiC and SiO 2 nanoparticles vol.130, 2017, https://doi.org/10.1016/j.compositesb.2017.07.045
  6. AE Application for Fracture Behavior of SiC Reinforced CFRP Composites vol.31, pp.3, 2016, https://doi.org/10.14346/JKOSOS.2016.31.3.16
  7. 온도 감지용 연필 선 종이 센서 최적화 연구 vol.18, pp.1, 2013, https://doi.org/10.17702/jai.2017.18.1.1
  8. 루테늄촉매 활성정도에 따른 유리섬유/폴리다이사이클로펜타다이엔 복합재료의 기계 및 계면물성 변화 vol.19, pp.1, 2018, https://doi.org/10.17702/jai.2018.19.1.13