DOI QR코드

DOI QR Code

Fabrication of barium titanate-bismuth ferrite fibers using electrospinning

  • Baji, Avinash (Engineering Product Development (EPD) Pillar, Singapore University of Technology and Design (SUTD)) ;
  • Abtahi, Mojtaba (Centre for Advanced Materials Technology (CAMT), School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney)
  • Received : 2013.05.30
  • Accepted : 2013.10.20
  • Published : 2013.12.25

Abstract

One-dimensional multiferroic nanostructured composites have drawn increasing interest as they show tremendous potential for multifunctional devices and applications. Herein, we report the synthesis, structural and dielectric characterization of barium titanate ($BaTiO_3$)-bismuth ferrite ($BiFeO_3$) composite fibers that were obtained using a novel sol-gel based electrospinning technique. The microstructure of the fibers was investigated using scanning electron microscopy and transmission electron microscopy. The fibers had an average diameter of 120 nm and were composed of nanoparticles. X-ray diffraction (XRD) study of the composite fibers demonstrated that the fibers are composed of perovskite cubic $BaTiO_3$-$BiFeO_3$ crystallites. The magnetic hysteresis loops of the resultant fibers demonstrated that the fibers were ferromagnetic with magnetic coercivity of 1500 Oe and saturation magnetization of 1.55 emu/g at room temperature (300 K). Additionally, the dielectric response of the composite fibers was characterized as a function of frequency. Their dielectric permittivity was found to be 140 and their dielectric loss was low in the frequency range from 1000 Hz to $10^7$ Hz.

Keywords

References

  1. Baji, A., Mai, Y.W., Du, X.S. and Wong, S.C. (2012), "Improved tensile strength and ferroelectric phase content of self-assembled polyvinylidene fluoride fiber yarns", Macromol. Mater. Eng., 297(3), 209-213. https://doi.org/10.1002/mame.201100176
  2. Baji, A., Mai, Y.W., Li, Q. and Liu, Y. (2011a), "Nanoscale investigation of ferroelectric properties in electrospun barium titanate/polyvinylidene fluoride composite fibers using piezoresponse force microscopy", Compos. Sci. Technol., 71(11), 1435-1440. https://doi.org/10.1016/j.compscitech.2011.05.017
  3. Baji, A., Mai, Y.W, Li, Q. and Liu, Y. (2011b), "Electrospinning induced ferroelectricity in poly (vinylidene fluoride) fibers", Nanoscale., 3(8), 3068-3071. https://doi.org/10.1039/c1nr10467e
  4. Baji, A., Mai, Y.W., Li, Q.A., Wong, S.C., Liu, Y. and Yao, Q.W. (2011c), "One-dimensional multiferroic bismuth ferrite fibers obtained by electrospinning techniques", Nanotechnology, 22(23), 235702. https://doi.org/10.1088/0957-4484/22/23/235702
  5. Bune, A.V., Fridkin, V.M., Ducharme, S., Blinov, L.M., Palto, S.P., Sorokin, A.V., Yudin, S.G. and Zlatkin, A. (1998), "Two-dimensional ferroelectric films", Nature, 391(6670), 874-877. https://doi.org/10.1038/36069
  6. Buscaglia, M.T., Viviani, M., Buscaglia, V., Mitoseriu, L., Testino, A., Nanni, P., Zhao, Z., Nygren, M., Harnagea, C., Piazza, D. and Galassi, C. (2006), "High dielectric constant and frozen macroscopic polarization in dense nanocrystalline BaTiO3 ceramics", Phys. Rev. B, 73(6), 064114. https://doi.org/10.1103/PhysRevB.73.064114
  7. Dutta, P.K., Asiaie, R., Akbar, S.A. and Zhu, W.D. (1994), "Hydrothermal synthesis and dielectricproperties of tetragonal $BaTiO_{3}$", Chem. Mater., 6(9), 1542-1548. https://doi.org/10.1021/cm00045a011
  8. Goto, T., Yamasaki, Y., Watanabe, H., Kimura, T. and Tokura, Y. (2005), "Anticorrelation between ferromagnetism and ferroelectricity in perovskite manganites", Phys. Rev. B, 72(22), 220403.
  9. Hemberger, J., Lunkenheimer, P., Fichtl, R., von Nidda, H.A.K., Tsurkan, V. and Loidl, A. (2005), "Relaxor ferroelectricity and colossal magnetocapacitive coupling in ferromagnetic CdCr2S4", Nature, 434(7031), 364-367. https://doi.org/10.1038/nature03348
  10. Iakovlev, S., Solterbeck, C.H., Kuhnke, M. and Es-Souni, M. (2005), "Multiferroic BiFeO3 thin films processed via chemical solution deposition: Structural and electrical characterization", J. App. Phys., 97(9), 094901. https://doi.org/10.1063/1.1881776
  11. Kumar, M.M., Srinivas, A. and Suryanarayana, S.V. (2000), "Structure property relations in BiFeO3/BaTiO3 solid solutions", J. App. Phys., 87(2), 855-862. https://doi.org/10.1063/1.371953
  12. Lee, H.W., Moon, S., Choi, C.H. and Kim, D.K. (2012), "Synthesis and size control of tetragonal barium titanate nanopowders by facile solvothermal method", J. Am. Ceram. Soc., 95(8), 2429-2434. https://doi.org/10.1111/j.1551-2916.2012.05085.x
  13. Liu, G., Nan, C.W. and Sun, J. (2006), "Coupling interaction in nanostructured piezoelectric/magnetostrictive multiferroic complex films", Acta Mater., 54(4), 917-925. https://doi.org/10.1016/j.actamat.2005.10.020
  14. Mazumder, R., Devi, P.S., Bhattacharya, D., Choudhury, P., Sen, A. and Raja, M. (2007), "Ferromagnetism in nanoscale BiFeO3", Appl. Phys. Lett., 91(6), 062510. https://doi.org/10.1063/1.2768201
  15. Nan, C.W., Bichurin, M.I., Dong, S.X., Viehland, D. and Srinivasan, G. (2008), "Multiferroic magnetoelectric composites: Historical perspective, status, and future directions", J. Appl. Phys., 103(3), 031101. https://doi.org/10.1063/1.2836410
  16. Nan, C.W., Liu, G., Lin, Y.H. and Chen, H.D. (2005), "Magnetic-field-induced electric polarization in multiferroic nanostructures", Phys. Rev. Lett., 94(19), 197203. https://doi.org/10.1103/PhysRevLett.94.197203
  17. Quan, Z.C., Liu, W., Hu, H., Xu, S., Sebo, B., Fang, G.J., Li, M.Y. and Zhao, X.Z. (2008), "Microstructure, electrical and magnetic properties of Ce-doped BiFeO(3) thin films", J. Appl. Phys., 104(8), 084106. https://doi.org/10.1063/1.3000478
  18. Sahu, J.R. (2007), "Beneficial modification of the properties of multiferroic BiFeO3 by cation substitution", Solid State Sci., 9(10), 950-954. https://doi.org/10.1016/j.solidstatesciences.2007.06.006
  19. Sakamoto, W., Iwata, A. and Yogo, T. (2008), "Ferroelectric properties of chemically synthesized perovskite BiFeO3-PbTiO3 thin films", J. Appl. Phys., 104(10), 104106. https://doi.org/10.1063/1.3026527
  20. Singh, H., Kumar, A. and Yadav, K.L. (2011), "Structural, dielectric, magnetic, magnetodielectric and impedance spectroscopic studies of multiferroic BiFeO3-BaTiO3 ceramics", Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater., 176(7), 540-547. https://doi.org/10.1016/j.mseb.2011.01.010
  21. Song, C., Wang, C.Z., Yang, Y.C., Liu, X.J., Zeng, F. and Pan, F. (2008), "Room temperature ferromagnetism and ferroelectricity in cobalt-doped LiNbO(3) film", Appl. Phys. Lett., 92(26), 262901. https://doi.org/10.1063/1.2952772
  22. Wang, J., Neaton, J.B., Zheng, H., Nagarajan, V., Ogale, S.B., Liu, B., Viehland, D., Vaithyanathan, V., Schlom, D.G., Waghmare, U.V., Spaldin, N.A., Rabe, K.M., Wuttig and M., Ramesh, R. (2003), "Epitaxial BiFeO3 multiferroic thin film heterostructures", Science, 299(5613), 1719-1722. https://doi.org/10.1126/science.1080615
  23. Wu, H., Zhang, R., Liu, X.X., Lin, D.D. and Pan, W. (2007), "Electrospinning of Fe, Co, and Ni nanofibers: Synthesis, assembly, and magnetic properties", Chem. Mater., 19(14), 3506-3511. https://doi.org/10.1021/cm070280i
  24. Xu, B., Yin, K.B., Lin, J., Xia, Y.D., Wan, X.G., Yin, J., Bai, X.J., Du, J. and Liu, Z.G. (2009), "Roomtemperature ferromagnetism and ferroelectricity in Fe-doped BaTiO3", Phys. Rev. B, 79(13), 134109. https://doi.org/10.1103/PhysRevB.79.134109
  25. Yuh, J., Nino, J.C. and Sigmund, W.A. (2005), "Synthesis of barium titanate (BaTiO3) nanofibers via electrospinning", Mater. Lett., 59(28), 3645-3647. https://doi.org/10.1016/j.matlet.2005.07.008
  26. Yun, K.Y., Ricinschi, D., Kanashima, T. and Okuyama, M. (2006), "Enhancement of electrical properties in polycrystalline BiFeO3 thin films", Appl. Phys. Lett., 89(19), 192902. https://doi.org/10.1063/1.2385859
  27. Zhu, Y., Zhang, J.C., Zhai, J. and Jiang, L. (2006), "Preparation of superhydrophilic alpha-Fe2O3 nanofibers with tunable magnetic properties", Thin Solid Films, 510(1-2), 271-274. https://doi.org/10.1016/j.tsf.2005.09.004