DOI QR코드

DOI QR Code

Crystal Structures and Physical Properties of Ag(I) Coordination Polymers with Unsymmetrical Dipyridyl Ligand

  • Lee, Eunji (Department of Chemistry and Research Institute of Natural Science, Gyeongsang National University) ;
  • Ryu, Hyunsoo (Department of Chemistry and Research Institute of Natural Science, Gyeongsang National University) ;
  • Moon, Suk-Hee (Department of Food and Nutrition, Kyungnam College of Information and Technology) ;
  • Park, Ki-Min (Department of Chemistry and Research Institute of Natural Science, Gyeongsang National University)
  • Received : 2013.06.27
  • Accepted : 2013.08.09
  • Published : 2013.11.20

Abstract

Keywords

Experimental

All chemicals were of analytical regent grade and used without further purification. The IR spectra were recorded on a VERTEX 80v FT-IR spectrometer with KBr pellet in the range 4000-400 cm−1. Elemental analysis was carried out on a CHNS-932 elemental analyzer. Thermogravimetric analysis (TGA) was performed under nitrogen on a SDT Q600 thermogravimetric analyzer. The sample was heated using a 10 ℃/min heating rate from 25 to 900 ℃. The solidstate excitation and emission spectra were performed on a RF-5301 spectrophotometer.

Preparation of N,N-(2-Pyridyl)(2-pyridylmethyl)amine (L). L was synthesized according to literature procedure.7

Synthesis of {[Ag(L)]·(ClO4)·(DMSO)}n (1). A MeOH (5 mL) solution of AgNO3 (43.0 mg, 0.254 mmol) was added dropwise to the MeOH solution (10 mL) of L (50.0 g, 0.231 mmol) at room temperature. The white precipitate in 94% yield formed immediately. The precipitate was filtered off, washed with methanol and diethyl ether, and dried in vacuo. Single crystals suitable for X-ray analysis were obtained by vapor diffusion of diethyl ether into DMSO solution. Yield: 63%. Anal. Calc. for C13H17AgClN3O5S (%): C, 33.17; H, 3.64; N, 8.93. Found: C, 33.28; H, 3.73; N, 10.05. IR (KBr pellet, cm−1): 3228, 3072, 3034, 2854, 1606, 1576, 1518, 1459, 1426, 1332, 1161, 1115, 1089 (ClO4−), 789, 716, 636, 628. mp 268-269 ℃ (decomp.).

Synthesis of {[Ag(L)]·(BF4)·(DMSO)}n (2). The synthetic procedure was almost the same as for 1 except for the use of AgClO4 instead of AgBF4. Yield: 57%. Anal. Calc. for C13H17AgBF4N3OS (%): C, 34.09; H, 3.74; N, 9.17. Found: C, 34.15; H, 3.78; N, 9.24. IR (KBr pellet, cm−1): 3228, 3072, 3033, 2874, 2584, 1606, 1576, 1519, 1458, 1426, 1332, 1161, 1039 (BF4−), 789, 716, 533, 522. mp 265-266 ℃ (decomp.).

Synthesis of {[Ag(L)]·(PF6)·(DMSO)}n (3). The synthetic procedure was almost the same as for 1 except for the use of AgClO4 instead of AgPF6. Yield: 67%. Anal. Calc. for C13H17AgF6N3OPS (%): C, 30.25; H, 3.32; N, 8.14. Found: C, 30.18; H, 3.48; N, 8.02. IR (KBr pellet, cm−1): 3226, 3070, 3034, 2874, 1608, 1575, 1517, 1459, 1423, 1331, 1161, 1029, 835 (PF6−), 786, 716, 637, 558. mp 270-271 ℃ (decomp.).

X-ray Crystallography. Single crystal diffraction data of 1 and 2 were collected on a Bruker Smart diffractometer equipped with a graphite monochromated Mo Kα (λ = 0.71073 Å) radiation source and a CCD detector. The 45 frames of two dimensional diffraction images were collected and processed to obtain the cell parameters and orientation matrix. A total of 1271 frames of two-dimensional diffraction images were collected, each of which was measured for 5 sec. Decay was monitored by 50 standard data frames measured at the beginning and end of data collection. The crystal showed no significant decay. The frame data were processed to give structure factors using the SAINT.13 The structure was solved by direct methods and refined by full matrix least squares methods on F2 for all data using SHELXTL software.14 In all compounds, all atoms except oxygen atoms in DMSO molecule were disordered over two sites with equal site occupation factors of 0.5. The nonhydrogen atoms were refined anisotropically. All hydrogen atoms except that of amine in all compounds were placed in calculated positions and refined with a riding model. The H atom of amine was located from difference Fourier map and refined with riding constraints. Crystallographic data and structural refinement data for compounds 1-3 is summarized in Table 1. Crystallographic data for the structures reported here have been deposited with CCDC (Deposition No. CCDC-646600 (1), CCDC-946601 (2), and CCDC-946602 (3)). These data can be obtained free of charge via http:// www.ccdc.cam.ac.uk/conts/retrieving.html or from CCDC, 12 Union Road, Cambridge CB2 1EZ, UK, E-mail: deposit @ccdc.cam.ac.uk (or FIZ, D-76344, Eggenstein-Leopoldshafen, Germany, E-mail: crysdata@fiz-karlsruhe.de).

References

  1. Imaz, I.; Maspoch, D. Self-Assembly of Coordination Chains and Helices in Supramolecular Chemistry: From Molecules to Nanomaterials; Gale, P. A., Steed, J. W., Eds.; John Wiley and Sons: Chichester, U. K., 2012; Vol. 5, p 2045.
  2. Li, J. R.; Bu, X. H.; Jiao, J.; Du, W. P.; Xu, X. H.; Zhang, R. H. J. Chem. Soc., Dalton Trans. 2005, 464.
  3. Leong, W. L.; Vittal, J. J. Chem. Rev. 2011, 111, 688. https://doi.org/10.1021/cr100160e
  4. Zeng, J.-P.; Cong, H.; Chen, K.; Xue, S.-F.; Zhang, Y.-Q.; Zhu, Q.-J.; Liu, J.-X.; Tao, Z. Inorg. Chem. 2011, 50, 6521. https://doi.org/10.1021/ic200850r
  5. Deng, Z.-P.; Zhu, L.-N.; Gao, S.; Huo, L.-H.; Ng, S. W. Cryst. Growth Des. 2008, 8, 3277. https://doi.org/10.1021/cg800091y
  6. Dong, Y. B.; Sun, T.; Ma, J. P.; Zhao, X. X.; Huang, R. Q. Inorg. Chem. 2006, 45, 10613. https://doi.org/10.1021/ic0612552
  7. Argent, S. P.; Adams, H.; Harding, L. P.; Riis-Johannessen, T.; Jeffery, J. C.; Ward, M. D. New J. Chem. 2005, 29, 904. https://doi.org/10.1039/b502423d
  8. Sarkar, M.; Biradha, K. CrystEngComm. 2004, 6, 310. https://doi.org/10.1039/b412903b
  9. Maekawa, M.; Konaka, H.; Suenaga, Y.; Kuroda-Sowa, T.; Munakata, M. J. Chem. Soc., Dalton Trans. 2000, 4160.
  10. Khlobystov, A. N.; Blake, A. J.; Champness, N. R.; Lemenovskii, D. A.; Majouga, A. G.; Zyk, N. V.; Schroder, M. Coord. Chem. Rev. 2001, 222, 155. https://doi.org/10.1016/S0010-8545(01)00370-8
  11. Withersby, M. A.; Blake, A. J.; Champness, N. R.; Hubberstey, P.; Li, W.-S.; Schroder, M. Angew. Chem., Int. Ed. 1997, 36, 2327. https://doi.org/10.1002/anie.199723271
  12. Lee, E.; Seo, J.; Lee, S. S.; Park, K.-M. Cryst. Growth Des. 2012, 12, 3834. https://doi.org/10.1021/cg300692y
  13. Park, K.-M.; Seo, J.; Moon, S.-H.; Lee, S. S. Cryst. Growth Des. 2010, 10, 4148. https://doi.org/10.1021/cg1008472
  14. Seo, J.; Moon, S.-T.; Kim, J.; Lee, S. S.; Park, K.-M. Bull. Korean Chem. Soc. 2003, 24, 1393. https://doi.org/10.5012/bkcs.2003.24.9.1393
  15. Kim, S. A.; Kim, Y. J.; Park, K.-M.; Choi, S. N.; Jung, O.-S. Bull. Korean Chem. Soc. 2005, 26, 181. https://doi.org/10.5012/bkcs.2005.26.1.181
  16. Uemura, K.; Kumamoto, Y.; Kitagawa, S. Chem.-Eur. J. 2008, 14, 9565. https://doi.org/10.1002/chem.200800806
  17. Zhang, Z.-Y.; Deng, Z.-P.; Huo, L.-H.; Zhao, H.; Gao, S. Inorg. Chem. 2013, 52, 5914. https://doi.org/10.1021/ic400055t
  18. Jung, O.-S.; Kim, Y. J.; Lee, Y. A.; Park, K.-M.; Lee, S. S. Inorg. Chem. 2003, 42, 844. https://doi.org/10.1021/ic025935q
  19. Foxon, S. P.; Walter, O.; Schindler, S. Eur. J. Inorg. Chem. 2002, 111.
  20. Lee, S.; Park, S.; Kang, Y.; Moon, S.-H.; Lee, S. S.; Park, K.-M. Bull. Korean Chem. Soc. 2008, 29, 1811. https://doi.org/10.5012/bkcs.2008.29.9.1811
  21. Wang, Q.-M.; Mak, T. C. W. J. Am. Chem. Soc. 2000, 122, 7608. https://doi.org/10.1021/ja001286a
  22. Lee, J. W.; Kim, E. A.; Kim, Y. J.; Lee, Y.-A.; Pak, Y.; Jung, O.-S. Inorg. Chem. 2005, 44, 3151. https://doi.org/10.1021/ic048537r
  23. Janiak, C. J. Chem. Soc., Dalton Trans. 2000, 3885.
  24. Lancashire, R. J. In Comprehensive Coordination Chemistry; Wilkinson, G., Ed.; Pergamon: Oxford, U.K., 1987; Vol. 5, p 777.
  25. Xiong, R. G.; Zuo, J. L.; You, X. Z.; Fun, H. K.; Raj, S. S. S. Organometallics 2000, 19, 4183. https://doi.org/10.1021/om0002531
  26. Collin, J. P.; Dixon, I. M.; Sauvage, J. P.; Williams, J. A. G.; Barigelletti, F.; Flamigni, L. J. Am. Chem. Soc. 1999, 121, 5009. https://doi.org/10.1021/ja9833669
  27. Rendell, D. Fluorescence and Phosphorescence; Wiley: New York, 1987.
  28. Bruker, SAINT (ver. 6.22): Area Detector Control and Integration Software; Bruker AXS Inc.; Madison, Wisconsin, U.S.A. 2000.
  29. Bruker, SHELXTL (ver. 6.10): Program for Solution and Refinement of Crystal Structures; Bruker AXS Inc.; Madison, Wisconsin, U.S.A. 2000.

Cited by

  1. ′] trifluoromethanesulfonate] vol.70, pp.11, 2014, https://doi.org/10.1107/S1600536814022922
  2. ′] nitrate dimethyl sulfoxide disolvate] vol.70, pp.12, 2014, https://doi.org/10.1107/S1600536814024817
  3. ′] hexafluoridophosphate] vol.70, pp.6, 2014, https://doi.org/10.1107/S1600536814011465
  4. Double-Helical Silver(I) Coordination Polymer Based on an Unsymmetrical Ligand vol.36, pp.5, 2015, https://doi.org/10.1002/bkcs.10274
  5. Crystal Structure and Physical Properties of Silver(I) Coordination Polymer with Helical Looped-Chain Topology vol.35, pp.12, 2014, https://doi.org/10.5012/bkcs.2014.35.12.3658