DOI QR코드

DOI QR Code

Estimation of Thermodynamic/Transport Properties of Kerosene using a 3-Species Surrogate Mixture

3-화학종 대체 혼합물을 이용한 케로신의 열역학적·전달 상태량 예측

  • Received : 2013.01.18
  • Accepted : 2013.10.22
  • Published : 2013.11.01

Abstract

Kerosene(Jet A-1), one of the propellants for each stage's engine of the Korea Space Launch Vehicle-II(KSLV-II), functions as coolant at the same time as it flows inside the cooling jacket of the combustion chambers and is injected through the film cooling holes. A physical surrogate mixture model to reproduce the thermophysical characteristics of Jet A-1 has been selected and the thermodynamic/transport properties of the model fuel under high pressure including supercritical conditions have been estimated using SUPERTRAPP(NIST SRD4). Comparisons with the measured properties suggest that proposed database can be used to extract properties of Jet A-1 for conjugate heat transfer analysis of liquid propellant rocket engine thrust chambers. Predicted combustion/cooling performance of regeneratively cooled thrust chambers shall be validated through comparisons with upcoming firing test results.

한국형발사체(KSLV-II) 각 단 엔진의 연료로 사용되는 케로신(Jet A-1)은 추력실 재생냉각 및 연료 막냉각 과정에서 냉각유체로도 기능하게 된다. 본 연구에서는 Jet A-1의 열물리적 특성을 재현하기 위한 대체 혼합물 모델을 선정하고, SUPERTRAPP(NIST SRD4)을 이용하여 초임계압 영역을 포함하는 고압 영역에서 모델 연료의 열역학적 전달 상태량을 예측하였다. 측정값과의 비교 결과 액체로켓 엔진 추력실의 복합 열전달 해석 수행 시 Jet A-1 상태량을 추출하기 위한 데이터베이스로 활용 가능한 것으로 판단되며, 향후 연소 시험 결과와의 비교를 통하여 케로신 대체 모델의 상태량 정보를 이용한 재생냉각 추력실의 연소 냉각 성능 통합 해석 결과를 지속적으로 검증해 나갈 계획이다.

Keywords

References

  1. Colket, M., Edwards, T. and Williams, S., Cernansky, N. P., Miller, D. L., Egolfopoulos, F., Lindstedt, P., Seshadri, K., Dryer, F. L., Law, C. K., Friend, D., Lenhert, D. B., Pitsch, H., Sarofim, A., Smooke, M., and Tsang, W., "Development of an Experimental Database and Kinetic Models for Surrogate Jet Fuels," 45th AIAA Aerospace Sciences Meeting and Exhibit, 8-11 January 2007.
  2. Huber, M. L., Lemmon, E. W., and Bruno, T. J., " Surrogate Mixture Models for the Thermophysical Properties of Aviation Fuel Jet-A," Energy & Fuels, Vol. 24, May 2010, pp.3565-3571. https://doi.org/10.1021/ef100208c
  3. Bruno, T. J., and Huber, M. L., "Evaluation of the Physicochemical Authenticity of Aviation Kerosene Surrogate Mixtures. Part 2: Analysis and Prediction of Thermophysical Properties," Energy & Fuels, Vol. 24, Jul. 2010, pp.4277-4284. https://doi.org/10.1021/ef1004978
  4. Huber, M. L., NIST Thermophysical Properties of Hydrocarbon Mixtures Database (SUPERTRAPP) Version 3.2 Users' Guide, National Institute of Standards and Technology, Jan. 2007.
  5. Cismondi, M., and Mollerup, J., "Development and Application of a Three-Parameter RK-PR Equation of State," Fluid Phase Equilibria, Vol. 232, Apr. 2005, pp.74-89. https://doi.org/10.1016/j.fluid.2005.03.020
  6. Chung, T. H., Ajlan, M., Lee, L. L., Starling, K. E., " Generalized Multiparameter Correlation for Nonpolar and Polar Fluid Transport Properties," Industrial & Engineering Chemistry Research, Vol. 27, Apr. 1988, pp.671-679. https://doi.org/10.1021/ie00076a024
  7. Bruno, T. J., Huber, M., Laesecke, A., Lemmon, E., McLinden, M., Outcalt, S. L., Perkins, R., Smith, B. L., Widegren, J. A., Thermodynamic, Transport, and Chemical Properties of "Reference" JP-8, NISTIR 6659, NIST, Jul. 2010.
  8. Huber, M. L. and Hanley, H. J. M., The Corresponding-States Principle: Dense Fluids, in Transport Properties of Fluids: Their Correlation, Prediction and Estimation(ed.), Cambridge University Press, 1996.
  9. Mason, E. A. and Uribe, F. J., The Corresponding-States Principle: Dilute Gases, in Transport Properties of Fluids: Their Correlation, Prediction and Estimation(ed.), Cambridge University Press, 1996.
  10. McLinden, M. O., Klein, S. A., Perkins, R. A., An extended corresponding states model for the thermal conductivity of refrigerants and refrigerant mixtures, International Journal of Refrigeration, Vol. 23, 2000, pp.43-63. https://doi.org/10.1016/S0140-7007(99)00024-9
  11. Kim, S., Choi, H. and Kim, Y., "Thermodynamic modeling based on a generalized cubic equation of state for kerosene/LOx rocket combustion," Combustion and Flame, Vol. 159, Mar. 2012, pp.1351-1365. https://doi.org/10.1016/j.combustflame.2011.10.008
  12. Kim, S., Han, S. H., Joh, M. and Choi, H., " Numerical Modeling of High-Pressure Combustion Processes of Kerosene/Liquid Oxygen within Liquid Rocket Combustion Chambers," Proceedings of the 2011 KSAS Fall Conference, Nov. 2011.
  13. Kim, K., Heo, J. and Sung, H., " Study on Thermophysical Property Characteristics of Kerosene Surrogates in a Swirl Injector at Supercritical Pressure Condition," Proceedings of the 2012 KSPE Fall Conference, Nov. 2012, pp.70-77.
  14. Dobrovolskij, M., Liquid Rocket Engine, in Russian, Izdatelstvo MGTU im. Baumana, 2006.
  15. Kim, S. and Choi, H., " Development of Numerical Framework for Design and Analysis of Liquid Rocket Thrust Chambers," Proceedings of the 2009 KSPE Fall Conference, 2009.
  16. Kim, S., Joh, M. and Choi, H., " Film Cooling Modeling for Combustion and Heat Transfer within a Regeneratively Cooled Rocket Combustor," Proceedings of the 2011 KSPE Fall Conference, Nov. 2011.
  17. Joh, M., Kim, S. and Choi, H., "Combustion/Cooling Performance Analysis of a Liquid Rocket Thrust Chamber with High Expansion Ratio," Proceedings of the 2012 KSPE Fall Conference, Nov. 2012, pp.93-98.
  18. Joh, M., Kim, S. and Choi, H., " A Trade-off Analysis between Combustion and Cooling Performance of a Liquid Rocket Combustor with Fuel Film Cooling Scheme," Journal of the Korean Society of Propulsion Engineers, Vol. 16, No. 6, 2012, pp.16-22. https://doi.org/10.6108/KSPE.2012.16.6.016
  19. Park, T. S., Sung, H. J. and Suzuki, K., "Development of a Nonlinear Near-Wall Turbulence Model for Turbulent Flow and Heat Transfer," International Journal of Heat and Fluid Flow, Vol. 24, 2003, pp.29-40. https://doi.org/10.1016/S0142-727X(02)00211-4
  20. Choi, H., Han, Y., Kim, Y. and Cho, G., " Development of 30-Tonf LOx/Kerosene Rocket Engine Combustion Devices(I) - Combustion Chamber," Journal of The Korean Society for Aeronautical and Space Sciences, Vol. 37, No. 10, 2009, pp.1027-1037. https://doi.org/10.5139/JKSAS.2009.37.10.1027