DOI QR코드

DOI QR Code

Organic Carbon Distribution and Budget in the Pinus densiflora Forest at Mt. Worak National Park

월악산 소나무림의 유기탄소 분포 및 수지

  • Lee, Ji-Young (Dept. of Life Science, Kongju National University) ;
  • Kim, Deok-Ki (Dept. of Life Science, Kongju National University) ;
  • Won, Ho-Yeon (Dept. of Life Science, Kongju National University) ;
  • Mun, Hyeong-Tae (Dept. of Life Science, Kongju National University)
  • Received : 2013.06.28
  • Accepted : 2013.10.29
  • Published : 2013.10.31

Abstract

Organic carbon distribution and carbon budget of a Pinus densiflora forest in the Songgye valley of Mt. Worak National Park were investigated. Carbon in above and below ground standing biomass, litter layer, and soil organic carbon were measured from May 2011 through April 2012. For the estimation of carbon budget, soil respiration was measured. The amount of carbon allocated to above and below ground biomass was 52.25 and 14.52 ton C $ha^{-1}$. Amount of organic carbon in annual litterfall was 4.71 ton C $ha^{-1}$. Amount of organic carbon within 50cm soil depth was 58.56 ton C $ha^{-1}$ 50cm-$depth^{-1}$. Total amount of organic carbon in this Pinus densiflora forest was estimated to 130.04 ton C $ha^{-1}$. Amount of organic carbon in tree layer, shrub and herb layer was 4.12, 0.10 and 0.04 ton C $ha^{-1}yr^{-1}$ and total amount of organic carbon was 4.26 ton C $ha^{-1}yr^{-1}$. Amount of organic carbon returned to the forest via litterfall was 1.62 ton C $ha^{-1}yr^{-1}$. The amount of carbon evolved through soil respiration was 6.25 ton C $ha^{-1}yr^{-1}$. The amount of carbon evolved through microbial respiration and root respiration was 3.19 and 3.06 ton C $ha^{-1}yr^{-1}$. The amount of organic carbon absorbed from the atmosphere of this Pinus densiflora forest was 1.07 ton C $ha^{-1}yr^{-1}$ when it was estimated from the difference between Net Primary Production and microbial respiration.

월악산국립공원 송계계곡에 발달되어 있는 소나무림에서 2011년 5월부터 2012년 4월까지 지상부와 지하부 생물량, 낙엽생산량, 낙엽층의 낙엽량, 그리고 토양의 유기탄소 분포를 조사하였으며, 탄소수지를 파악하기 위해 토양호흡량을 측정하였다. 지상부와 지하부 생물량에 분포되어 있는 유기탄소량은 각각 52.25, 14.52 ton C $ha^{-1}$ 이었으며, 낙엽층과 토양의 유기탄소량은 각각 4.71 ton C $ha^{-1}$, 58.56 ton C $ha^{-1}$ 50cm-$depth^{-1}$ 로 조사되었다. 조사지 소나무림의 전체 유기탄소량은 130.04 ton C $ha^{-1}$ 이었으며, 이중 51.4%가 식물체에 분포하는 것으로 나타났다. 본 소나무림에서 연간 광합성을 통하여 식물체에 고정된 유기탄소량은 4.26 ton C $ha^{-1}yr^{-1}$이었고, 층위별로는 교목층, 관목층, 초본층에 각각 4.12, 0.10 및 0.04 ton C $ha^{-1}yr^{-1}$의 유기탄소가 고정되었다. 조사기간 동안 낙엽생산을 통해 임상으로 유입되는 유기탄소량은 1.62 ton C $ha^{-1}$ 이었으며, 토양호흡을 통하여 방출되는 탄소량은 6.25 ton C $ha^{-1}yr^{-1}$으로 이중 미생물호흡과 뿌리호흡을 통해 방출되는 탄소량은 각각 3.19, 3.06 ton C $ha^{-1}yr^{-1}$이었다. 유기탄소 순 생산량과 미생물호흡량의 차이로 추정했을 때 본 소나무림에서 연간 대기로부터 순 흡수하는 유기탄소는 1.07 ton C $ha^{-1}yr^{-1}$ 로 조사되었다.

Keywords

References

  1. Abugre, S., C. Oti-Boateng and M.F. Yeboah(2011) Litterfall and decomposition trend of Jatropha curcas L. leaves mulches under two environmental conditions. Agric Biol J N Am. 2(3): 462-470.
  2. Armson, K.A.(1977) Forest Soils: Properties and Processes. University of Toronto Press, Toronto, 390pp.
  3. Arnold, R.W.(1995) Role of soil survey in obtaining a global carbon budget. In: Lal, R., J. Kimble, E. Levine and B.A. Stewart(ed.) Soils and Global Change, pp. 257-263.
  4. Black, C.A.(1965) Methods of Soil Analysis, Part 2. American Society of Agronomy, Inc., Madison, Wisconsin, pp. 1562-1565.
  5. Bond-Lamberty, B., C. Wang and S.T. Gower(2004) Contribution of root respiration to soil surface CO2 flux in a boreal black spruce chronosequence. Tree physiology 24: 1387-1395. https://doi.org/10.1093/treephys/24.12.1387
  6. Boyland, M.(2006) The economics of using forests to increase carbon storage. Can. J. For. Res. 36: 2223-2234. https://doi.org/10.1139/x06-094
  7. Brady, N.C. and R.R. Weil(2004) Element of the Nature and Properties of Soil. 2th ed. Pearson, Upper Saddle River, New Jersey, pp. 53-56.
  8. Bray, J.R. and E. Gorham(1964) Litter production in forests of the world. Advance in Ecological Reserch 2: 101-157. https://doi.org/10.1016/S0065-2504(08)60331-1
  9. Choi, H.J., I.Y. Jeon, C.H. Shin and H.T. Mun(2006) Soil properties of Quercus variabilis forest on Youngha valley in Mt. Worak National Park. J Ecol Field Biology 29: 439-443. https://doi.org/10.5141/JEFB.2006.29.5.439
  10. Coleman, D.(1973) Compartment analysis of total soil respiration: an exploratory study. oikos 24: 465-468. https://doi.org/10.2307/3543823
  11. Dixon, R.K., S. Brown, R.A. Houghton, A.M. Solomon, M.C. Trexler and L. Wisniewski(1994) Carbon pools and flux of global forest ecosystems. Science 263: 185-190. https://doi.org/10.1126/science.263.5144.185
  12. Dulohery, C.J., L.A. Morris and R. Lowrance(1996) Assessing forest soil disturbance through biogenic gas fluxes. Soil Science Society of America Journal 60(1): 291-298. https://doi.org/10.2136/sssaj1996.03615995006000010045x
  13. Eswaran, H., E. Van den Berg, P. Reich and J. Kimble(1995) Global soil carbon resources. In: Lal, R., J.M. Kimble, E. Levine and B.A. Stewart(ed.) Soils and Global Change, CRC-Press, pp. 27-44.
  14. Grigal, D.F. and L.F. Ohmann(1992) Carbon storage in upland forests of the Lake States. Soil Sci. Am. J. 56: 935-945. https://doi.org/10.2136/sssaj1992.03615995005600030042x
  15. Han,Y.(2002) Carbon Cycle Modelling by Litter Decomposition Rate and Estimation of Carbon Dioxide Budget in Quercus mongolica Forest at Mt. Songni National Park. Ph.D. Thesis, Chungbuk Nationaal University, 207pp.
  16. Hanson, P.J., N.T. Edwards, C.T. Garten and J.A. Andrews(2000) Separation root and soil microbial contributions to soil respiration: A review of methods and observation. Biogeochemistry 48: 115-146. https://doi.org/10.1023/A:1006244819642
  17. IPCC(2007) Climate Change 2007: Synthesis Report. Contribution of Working Group I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva, Switzerland, 104pp.
  18. Jeon, I.Y., C.H. Shin, G.H. Kim and H.T. Mun(2007) Organic carbon distribution of the Pinus densiflora forest on Songgye valley at Mt. Worak National Park. J Korean For Soc 30(1): 17-21.
  19. Johnson, D., D. Geisinger, R. Walker, J. Newman and J. Vose(1994) Soil $pCO_2$, soil respiration, and root activity in $CO_2$-fumigated and nitronen-fertilized ponderosa pine. Plant and Soil 165: 129-138. https://doi.org/10.1007/BF00009969
  20. Kang, S.J. and A.K. Kwak(1998) Comparisons of Phytomass and Productivity of Watershed Forest by Allometry in South Han River. J. Kor. For. En. 17(1): 8-22.
  21. Kimble, J.M., L.S. Heath, R.A. Birdsey and R. Lal(2003) The potential of U.S. Forest soils to sequester carbon and mitigate the green house effect. CRC Press, New York, 429pp.
  22. Kim, C.S. and H.S. Cho(2004) Quantitative comparisons of soil carbon and nutrient storage in Larix leptolepis, Pinus densiflora and Pinus rigitaeda plantations. Korean J Ecology 27: 67-71. https://doi.org/10.5141/JEFB.2004.27.2.067
  23. Kim, C.S.(2006) Soil carbon cycling and soil $CO_2$ efflux in a red pine (Pinus densiflora) stand. J Ecol Field Biol 29: 23-27. https://doi.org/10.5141/JEFB.2006.29.1.023
  24. Kimmins, J.P.(1987) Forest Ecology. MacMillan Publishing Company, New York, 531pp.
  25. Kim, S.B., N.C. Jung and K.H. Lee(2009) Soil $CO_2$ efflux and leaf-litter decomposition of Quercus variabilis and Pinus densiflora stands in the southern region of Korean Peninsular. Jour Korean For Soc 98(2): 183-188.
  26. Kyoto Protocal to the United Nations Framework Convention of Climate Change(1997)
  27. Lee, D.H.(2004) Estimating Above- and Below-ground Biomass from Diameter of Breast Height and Height for the Pinus densiflora Sieb. et Zucc.J. Kor. For. Soc. 93(3) : 242-250. (in Korean with English abstract)
  28. Lee, M.S., K. Nakane, T. Nakatsubo and H. Koizumi(2003) Seasonal changes in the contribution of root respiration to total soil respiration in a cool-temperate deciduous forest. Plant and Soil 255: 311-318. https://doi.org/10.1023/A:1026192607512
  29. Lee, K.J. and H.T. Mun(2005) Organic carbon distribution in an oak forest. Kor. J. Ecol. 28(5): 265-270. (in Korean with English abstract)
  30. Lee, K.J., H.Y. Won and H.T. Mun(2012) Contribution of root respiration to soil respiration for Quercus acutissima forest. Kor. J. Env. Ecol. 26(5) : 780-786. (in Korean with English abstract)
  31. Lee, K.J.(2013) CarbonBudget and Nutrient Cycling in the Quercus acutissima Forest. Ph.D. Thesis, Kongju National University, 133-134pp.
  32. Lee, S.U.(1981) Studies on forest soils in Korea (II). Journal of Korean forestry society 54: 25-35.
  33. Lee, S.K.(2011) Production and decomposition and organic carbon distribution in Pinus densiflora and Quercus mongolica and Robinia pseudoacacia Forest at Mt. Nam. Ph.D. Thesis, Kongju National University, pp. 22-26.
  34. Lee, Y.Y. and H.T. Mun(2001) A study on the soil respiration in a Quercus acutissima forest. Kor. J. Ecol. 24(3): 141-147. (in Korean with English abstract)
  35. Lousier, J.D. and D. Parkinson(1975) Litter decomposition in a cool temperate deciduous forest. Journal of Botany 54: 419-436.
  36. Moon, H.S., S.Y. Jung and S.C. Hong(2001) Rate of soil respiration at black locust (Robinia pseudo-acacia) stands in Jinju area. Kor. J. Ecology 24(6): 371-376.
  37. Morris, S.J. and E.A. Paul(2003) Forest soil ecology and soil organic carbon. In: Kimble, J.M., L.S. Heath, R.A. Birdsey and R. Lal(ed.) The Potential of U.S. Forest Soils to Sequester Carbon and Mitigate the Greenhouse Effect. CRC Press, New York, pp. 109-125.
  38. Namgung, J., H.J. Choi, A.R. Han and H.T. Mun(2008) Organic carbon distribution and budget in the Quercus variabilis forest in the Youngha valley of Worak National Park. Kor. J. Env. Ecol. 26(3): 170-176. (in Korean with English abstract)
  39. Namgung, J.(2010) Carbon Budget and Nutrient Cycling in the Quercus variabilis Forest at Mt. Worak National Park. Ph.D. Thesis, Kongju National University, pp. 152-156.
  40. Nakane, K., M. Yamamoto and H. Tsubota(1983) Estimation of root respiration rate in a mature forest ecosystem. Japanese J. Ecol. 33: 397-408.
  41. Nakane, K.(1995) Soil carbon cycling in a Japanese cedar (Cryptomeria japonica) plantation. Forest Ecology and Management 72: 185-197. https://doi.org/10.1016/0378-1127(94)03465-9
  42. Noh, N.J.(2011) Carbon and Nitrogen Dynamics in Natural Pinus densiflora Forest with Different Stand Densities. Ph.D. Thesis, Korea University, pp. 22-23.
  43. Park, I.H. and S.M. Lee(1990) Biomass and net production of Pinus densiflora natural forest of four local forms in Korea. Journal of Korean Forest Society 79: 196-204
  44. Park, G.S. and J.G. Lim(2004) Annual carbon storage by fine root production in Quercus variabilis forests. Kor. J. Env. Eco. 17(4) : 360-365. (in Korean with English abstract)
  45. Park, B.G. and I.S. Lee(1981) A Model for Litter Decomposition of the Forest Eco System in Seoul Korea. Kor. J. Ecol. 4(1): 38-51.
  46. Pyo, J.H., S.U. Kim and H.T. Mun(2003) A study on the carbon budget in Pinus koreansis plantation. Kor. J. Ecol. 26(3): 129-134. (in Korean with English abstract) https://doi.org/10.5141/JEFB.2003.26.3.129
  47. Pregitzer, K.S.(2003) Carbon cycling in forest ecosystems with an emphasis on belowground processes. In: Kimble, J.M., L.S. Heath, R.A. Birdsey and R. Lal(ed.) The potential of U.S. forest soils to sequester carbon and mitigate the greenhouse effect. CRC Press, New York, pp. 93-107.
  48. Raich, J.W. and A. Tufekcioglu(2000) Vegetation and soil respiration: correlations and controls. Biogeochemistry 48: 71-90. https://doi.org/10.1023/A:1006112000616
  49. Rodin, L.E. and N.I. Bazilevich(1967) Production and Mineral Cycling in Terrestrial Vegetation. Oliver and Boyd, London, England, 288pp.
  50. Ruess, R.W., K. Van Cleve, J. Yarie and L.A. Viereck(1996) Contributions of fine root production and turnover to the carbon and nitrogen cycling in taiga forests of the Alaskan interior. Car J For Res 26: 1326-1336.
  51. Ryan, M.G. and B.E. Law(2005) Interpreting, measuring, and modeling soil respiration. Biogeochemistry 73: 3-27. https://doi.org/10.1007/s10533-004-5167-7
  52. Satoo, T.(1966) Production and distribution of dry matter in forest ecosystems. Misc. Inform. Tokyo Univ. For. 16: 1-15
  53. Satoo, T. and H.A.I. Madgwick(1982) Forest Biomass. Martinus Nijhoff. Dr. W. Junk Publishers, 152pp.
  54. Schmitt, M.D.C. and D.F. Grigal(1981) Generalized biomass estimation equations for Betula papyrifera Marsh. Can J For Res 11(4): 837-840. https://doi.org/10.1139/x81-122
  55. Sharma, E. and R.S. Ambasht(1987) Litterfall, decomposition and nutrient release in an age sequence of Alnus nepalensis plantation stands in the eastern Himalaya. Ecology 75: 997-1010. https://doi.org/10.2307/2260309
  56. Shin, C.H.(2012) Carbon budget and Nutrient cycling in the Quercus mongolica forest at Mt. Worak National Park. Ph.D. Thesis, Kongju national University, pp. 152-156.
  57. Singh, J.S. and S.R. Gupta(1977) Plant decomposition and soil respiration in terrestrial ecosystems. Bot Rev 43: 449-528. https://doi.org/10.1007/BF02860844
  58. Son, Y. and H.W. Kim(1996) Soil respiration in Pinus rigida and Larix leptolepis plantations. J. Kor. For. Soc. 85(3): 496-505. (in Korean with English abstract)
  59. Song, C.Y. and S.U. Lee(1996) Biomass and Net Primary Productivity in Natural Forests of Quercus mongolica and Quercus variabilis. J. Kor. For. Soc. 85(3): 443-452.
  60. Tritton, L.M. and J.W. Hornbeck(1982) Biomass Equations for Major Tree Species of the Northeast. United States Department of Agriculture Forest Service, Northeastern Forest Experiment Station, General Technical Report, NE-69, 46pp.
  61. Vitousek, P.M.(1991) Can planted forests counteract increasing atmospheric carbon dioxide? Journal of Environmental Quality 20: 348-354.
  62. Waring, R.H. and W.H. Schlesinger(1985) Forest Ecosystems; Concept and Management. Academic Press, New York, 340pp.
  63. Winjum, J.K., R.K. Dixon and P.E. Schroeder(1992) Estimating the global potential of forest and agroforest management practices to sequester carbon. Water, Air and Soil Pollut 64: 213-227. https://doi.org/10.1007/BF00477103
  64. Zhou, T., P. Shi, D. Hui and Y. Luo(2009) Global pattern of temperature sensitivity of soil heterotrophic respiration (Q10) and its implications for carbon-climate feedback. Journal of geophysical research 114: 1-9.