DOI QR코드

DOI QR Code

Nano-Kenaf Cellulose Effects on Improved Mechanical Properties of Polypropylene Composite

나노 케냐프 셀룰로오스가 폴리프로필렌 복합소재의 물성 증가에 미치는 영향

  • Oh, Jeong Seok (Materials Development Center, Hyundai-Kia Motors Co.) ;
  • Lee, Seong-Hoon (Materials Development Center, Hyundai-Kia Motors Co.) ;
  • Bumm, Sughun (Institute of Polymer Engineering, The Univ. of Akron) ;
  • Kim, Kwang-Jea (Department of Polymer Science and Engineering, Inha Univ.)
  • 오정석 (현대기아자동차 고분자재료 연구팀) ;
  • 이성훈 (현대기아자동차 고분자재료 연구팀) ;
  • 범석훈 (애크런대 고분자공학과) ;
  • 김광제 (인하대학교 고분자공학과)
  • Received : 2013.04.03
  • Accepted : 2013.05.13
  • Published : 2013.09.25

Abstract

The effects of nano size kenaf cellulose fiber on mechanical property of polypropylene (PP) composite were investigated. The addition of nano-kenaf in place of natural kenaf showed higher tensile strength, flexural strength, impact strength, and heat deflection temperature compared to the natural kenaf filled PP composite, while it shows lower melt flow index, elongation%, and flexural modulus. These seemed to be due to the increased surface area of nano-kenaf fiber contacting PP matrix and reduced impurities such as volatile extractives on the fiber surface.

나노입자크기의 케냐프섬유를 폴리프로필렌에 첨가하였을 시, 복합소재의 물성변화를 관찰하였다. 천연크기의 케냐프섬유를 나노입자크기의 케냐프섬유로 대체하였을 시, 그 복합소재의 인장강도, 휨강도, 충격강도, 열변형온도가 증가한 반면에, 용융지수, 연신율(%), 충격강도 등이 감소하였다. 이는 나노입자크기의 케냐프섬유가 폴리프로필렌과 접촉하는 표면적의 증가와 섬유표면에 존재하는 휘발성 추출물질 등의 불순물의 감소에 따른 것으로 판단된다.

Keywords

References

  1. L. Czarnecki and J. L. White, J. Appl. Polym. Sci., 25, 1217 (1980). https://doi.org/10.1002/app.1980.070250623
  2. H. Dalvag, C. Klason, and H. E. Stromvall, Int. J. Polym. Mater., 11, 9 (1985). https://doi.org/10.1080/00914038508078651
  3. A. J. Michell, Appita, 39, 223 (1986).
  4. B. S. Sanschagrin, T. Sean, and B. V. Kokta, J. Thermoplast. Compos., 1, 184 (1988). https://doi.org/10.1177/089270578800100206
  5. I. Sakurada, Y. Nukushina, and T. Ito, J. Polym. Sci., 57, 651 (1962). https://doi.org/10.1002/pol.1962.1205716551
  6. H. Yano, "Research and application of cellulose nanofibre reinforced composites", Paper presented at 10th International Conference on Progress in Biofibre Plastic Composites, Totonto Canada, Opening Plenary Session, May 12-13 (2008).
  7. A. K. Bledzki, O. Faruk, and V. E. Sperber, Macromol. Mater. Eng., 291, 449 (2006). https://doi.org/10.1002/mame.200600113
  8. J. S. OH, S. Lee, and K. J. Kim, Elastom. Compos., 46, 125 (2011).
  9. K. S. Shon, Korea Patent 10-1196641 (2012).
  10. J. L. White and K. J. Kim, Thermoplastic and Rubber Compounds: Technology and Physical Chemistry, Hanser Publisher, Munich, Cincinnati, 2008.
  11. Y. Suetsugu and J. L. White, J. Appl. Polym. Sci., 28, 1481 (1983). https://doi.org/10.1002/app.1983.070280421
  12. R. K. Gupta, E. Kennel, and K. J. Kim, Polymer Nanocomposites Handbook, CRC Press, Boca Raton, 2009.
  13. R. Yosomiya, K. Morimoto, A. Nakajima, Y. Ikada, and S. Toshio, Adhesion and Bonding in Composites, Dekker, New York, 1989.
  14. A. E. Woodward, Atlas of Polymer Morphology, Munich, Hanser, 1988.
  15. A. E. Woodward and D. R. Morrow, J. Polym. Sci. A2, 7, 1651 (1969). https://doi.org/10.1002/pol.1969.160071003
  16. K. J. Kim, S. Bumm, R. K. Gupta, and J. L. White, Compos. Interface, 15, 301 (2008). https://doi.org/10.1163/156855408783810939
  17. R. G. Stanly, Forest Prod. J., 16, 62 (1966).
  18. J. W. Rowe and A. H. Conner, "Extractives in eastern hardwoodsa review", General Technical report FPL18, Forest products laboratory, Forest service, U.S. Department of Agriculture, Madison, WI (1979).
  19. K. J. Kim, S. Bumm, and J. L. White, J. Biobased Mater. Bio., 1, 388 (2007). https://doi.org/10.1166/jbmb.2007.015
  20. K. J. Kim, S. Bumm, and J. L. White, Compos. Interface, 15, 231 (2008). https://doi.org/10.1163/156855408783810830
  21. K. J. Kim and J. L. White, Compos. Interface, 16, 539 (2009).
  22. K. J. Kim, S. Bumm, and J. L. White, Compos. Interface, 16, 619 (2009). https://doi.org/10.1163/092764409X12477406858223
  23. G. M. Rizvi, L. M. Matuana, and C. B. Park, Polym. Eng. Sci., 40, 2124 (2000). https://doi.org/10.1002/pen.11345
  24. G. Guo, G. M. Rizvi, C. B. Park, and W. S. Lin, J. Appl. Polym. Sci., 91, 621 (2004). https://doi.org/10.1002/app.13193
  25. W. P. Chang, K. J. Kim, and R. K. Gupta, Compos. Interface, 16, 687 (2009). https://doi.org/10.1163/092764409X12477425232217
  26. W. P. Chang, K. J. Kim, and R. K. Gupta, Compos. Interface, 16, 937 (2009). https://doi.org/10.1163/092764409X12477481859067

Cited by

  1. Modification of nano-kenaf surface with maleic anhydride grafted polypropylene upon improved mechanical properties of polypropylene composite vol.22, pp.6, 2013, https://doi.org/10.1080/09276440.2015.1048099
  2. 폴리프로필렌-폴리(에틸렌 테레프탈레이트)/케냐프 펠트 복합체의 물리적 특성에 미치는 펠트 제조방향의 영향 vol.42, pp.4, 2013, https://doi.org/10.7317/pk.2018.42.4.695