DOI QR코드

DOI QR Code

Estimation of Groundwater Table using Ground Penetration Radar (GPR) in a Sand Tank Model and at an Alluvial Field Site

실내 모형과 현장 충적층에서 지하투과레이더를 이용한 지하수면 추정

  • Kim, Byung-Woo (Radioactive Waste Disposal Research Division, Korea Atomic Energy Research Institute) ;
  • Kim, Hyoung-Soo (Dept. of Renewable Energy, Jungwon University) ;
  • Choi, Doo-Houng (National Groundwater Information Center, Korea Water Resources Corporation) ;
  • Koh, Yong-Kwon (Radioactive Waste Disposal Research Division, Korea Atomic Energy Research Institute)
  • 김병우 (한국원자력연구원 방사성폐기물처분연구부) ;
  • 김형수 (중원대학교 신재생에너지학과) ;
  • 최두형 (한국수자원공사 국가지하수정보센터) ;
  • 고용권 (한국원자력연구원 방사성폐기물처분연구부)
  • Received : 2013.04.12
  • Accepted : 2013.09.02
  • Published : 2013.09.30

Abstract

Ground penetrating radar (GPR) surveys were conducted in a sand tank model in a laboratory and at an alluvial field site to detect the groundwater table and to investigate the influence of saturation on GPR response in the unsaturated zone. In the sand tank model, the groundwater table and saturation in the sand layer were altered by injecting water, which was then drained by a valve inserted into the bottom of the tank. GPR vertical reflection profile (VRP) data were obtained in the sand tank model for rising and lowering of the groundwater table to estimate the groundwater table and saturation. Results of the lab-scale model provide information on the sensitivity of GPR signals to changes in the water content and in the groundwater table. GPR wave velocities in the vadose zone are controlled mainly by variations in water content (increased travel time is interpreted as an increase in saturation). At the field site, VRP data were collected to a depth of 220 m to estimate the groundwater table at an alluvial site near the Nakdong river at Iryong-ri, Haman-gun, South Korea. Results of the field survey indicate that under saturated conditions, the first reflector of the GPR is indicative of the capillary fringe and not the actual groundwater table. To measure the groundwater table more accurately, we performed a GPR survey using the common mid-point (CMP) method in the vicinity of well-3, and sunk a well to check the groundwater table. The resultant CMP data revealed reflective events from the capillary fringe and groundwater table showing hyperbolic patterns. The normal moveout correction was applied to evaluate the velocity of the GPR, which improved the accuracy of saturation and groundwater table information at depth. The GPR results show that the saturation information, including the groundwater table, is useful in assessing the hydrogeologic properties of the vadose zone in the field.

지하수면과 불포화대의 수분 포화도가 지하투과레이더(GPR) 신호에 미치는 영향을 연구하기 위하여 실내 토조와 충적층 현장에서 GPR 조사를 수행하였다. 실내의 모래 채움 토조 실험에서, 지하수위를 변화시키기 위해 물을 탱크 바닥에 설치된 밸브를 통해 주입하고 배수시켰다. 지하수위와 수분포화도를 추정하기 위하여 모래 채움 토조에서 GPR 수직반사법(이후, VRP) 자료가 획득되었다. 실내 모래 채움 토조에서 획득된 GPR 신호는, 지하수위는 물론 함수율 변화에도 민감하게 반응함을 보여준다. 불포화대에서 GPR 속도는 함수율 변화에 따라 크게 조절되며, 주시 시간의 증가는 포화도의 증가로 해석된다. 함안군 이룡리 낙동강변 충적층에서 220m에 달하는 VRP 조사가, 지하수위를 추정하기 위하여 수행되었다. 현장 조사 결과, 포화 조건에서 GPR 신호의 첫 번째 반사면은 모관 상승에 의한 경계부를 지시하며, 실제 지하수면과는 차이가 있음을 지시한다. 보다 정확한 지하수위를 추정하기 위하여, Well-3호공 주변에서 중앙공심점(common mid-point, 이후, CMP) 방식 GPR 조사를 수행하였다. 그 결과, 모관 상승 경계부와 지하수면으로부터 반사되는 CMP 자료는 쌍곡선 형태를 보였다. NMO(nomal move-out) 보정을 통해, CMP 조사 자료로부터 GPR 신호의 속도를 구하였고, 이는 보다 상세한 지하수면과 심도별 포화도 정보를 제공하였다. 지하수면과 포화도 정보를 포함하는 GPR 조사결과는 통기대의 현장 수리 지질학적 특성 조사에 유용한 수단이다.

Keywords

References

  1. Abdul, A. S., 1988, Migration of petroleum products through sandy hydrogeologic system, Ground Water Monitoring Review, 8(6), 73-81.
  2. Annan, A. P., Cosway, S. W. and Redman, J. D., 1991. Water table detection with ground penetrating radar. Expanded Abstracts 61st Annual Meeting, Society of Exploration Geophysicists, Houston, Texas, vol. 1. SEG, Tulsa, OK, pp. 494-495.
  3. Andersson, M. G., 1976, Markfysikaliska undersokningar i odlad jord. XXV. Experimentell bestamning av olika poroppningars ekvivalentpordiameter jate planschbilaga over nagra experiment med sapfilmer, Grundforbattring 27(1), 3-31.
  4. Bian, Z., Lei, S., Inyang, H., Chang, L., Zang, R., Zhou, C. and He, X., 2009, Integrated method of RS and GPR for monitoring the changes in the soil moisture and groundwater environment due to underground coal mining, Environmental geology, 57(1), 131-142. https://doi.org/10.1007/s00254-008-1289-x
  5. Beres, M. Jr. and Haeni, F. P., 1991, Application of ground-penetrating-radar methods in hydrogeologic studies, Groundwater, 29, 375-386. https://doi.org/10.1111/j.1745-6584.1991.tb00528.x
  6. Braja, M. D., 2010, Principles of Geotechnical Engineering, Seventh Editon, CENGAGE Learning, 243-245.
  7. Cassidy, N. J., 2007, Evaluating LNAPL contamination using GPR signal attenuation analysis and dielectric property measurements: Practical implications for hydrological studies, Journal of contaminat hydrology, 94(1/2), 49-75. https://doi.org/10.1016/j.jconhyd.2007.05.002
  8. Chang, H.-S. and Jeong, S.-T., 2002, Survey of underwater deposits using ground penetrating radar, Journal of the Korean Geophysical society, 5(1), 51-62.
  9. Corbeanu, R. M., Soegaard, L., Szerbiak, R. B., Thurmond, J. B., McMechan, G. A., Wang, D., Snelgrove, S., Forster, C. B. and Menitove, A., 2001, Detailed internal architecture of a fluvial channel sandstone determined from outcrop, cores, and 3-D groundpenetrating radar: Example from the middle Cretaceous Ferron Sandstone, east-central Utah, AAPG Buletin, 85(9), 1538-1608.
  10. Daniels, J. J., roberts, R. and Vendl, M. A., 1995, Ground Penetrating Radar for the Detection of Liquid Contraminats. Journal of Applied Geophysics, 33, 195-207. https://doi.org/10.1016/0926-9851(95)90041-1
  11. Davis, J. L. and Annan, A. P., 1989, Ground-penetrating radar for high resolution mapping of soil and rock stratigraphy, Geophysical Prospecting, 37, 31-551. https://doi.org/10.1111/j.1365-2478.1989.tb01820.x
  12. DeRyck, S. M., Redman, J. D. and Annan, A. P, 1993, Geophysical Monitoring of a Controlled Kerosene Spill. Proc. of the Symposium on the Application of Geophysics to Engineering and Environmental Problems, EEGS, Englewood, Colrado. 5-19.
  13. Dorn, C., Linde, N., Doetsch, J., Le Borgne, T. and Bour, O., 2012, Fracture imaging within a granitic rock aquifer using multiple-offset single-hole and crosshole GPR reflection data, Journal of applied geophysics, 78, 123-132. https://doi.org/10.1016/j.jappgeo.2011.01.010
  14. Endres, A. L., Clement, W. P. and Rudolph, D. L., 2000, Ground Penetrating radar imaging of an aquifer during a pumping test, Ground Water 38, 566-576. https://doi.org/10.1111/j.1745-6584.2000.tb00249.x
  15. Fisher, E., McMechan G. A., Annan, A. P. and Cosway, S. W., 1992, Examples of reverse-time migration of single-channel, ground-penetrating radar profiles, Geophysics, 57(4), 577-586. https://doi.org/10.1190/1.1443271
  16. Fielding, C. R., Alexander, J. and McDonald, R., 1999, Sedimentary facies from ground-penetrating radar surveys of the modern, upper Burdekin River of north Queensland, Australia: consequences of extreme discharge fluctuations, Spec. Pulbs Int. Ass. Sediment 28, 347-362.
  17. Friedman, G. M. and Sanders, J. E., 1978, Principles of Sedimentology, Wiley, NY, 208p.
  18. Greaves, R. J., Lesmes, D. P., Lee, J. M. and Toksoz, M. N., 1996, Velocity Variations and Water Content Esitimated from Multi-Offset, Groum-Penetrating Radar, Geophysics, 61(3), 683-695. https://doi.org/10.1190/1.1443996
  19. Hansbo, S., 1960, Consolidation of clays with special reference to influence of vertical sand drain, Proc., Swedish Geotechnical Institute. No 18. Linkoping. pp. 160.
  20. Hagrey, S. A. and Muller, C., 2000, GPR study of pore water content and salinity in sand, Geophysical Prospecting, 48, 63-85. https://doi.org/10.1046/j.1365-2478.2000.00180.x
  21. Hazen, A.M., 1930, Data of yield and storage, in American Civil Engineers Handbook, New York, Hohn Wiey & Sons, 1452p.
  22. Holtz, R. D. and Kovacs, W. D., 1981, An introduction to geotechnical engineering, Prentice-Hall, Englewood Cliffs, N.J., 166-195
  23. Jang, H., Kuroda, S. and Kim H. J., 2011a, Efficient Electromagnetic Imaging of an Artificial Infiltration Process in the Vadose Zone, IEEE Geoscience and Remote Sensing Letters, 8(2), 243-247. https://doi.org/10.1109/LGRS.2010.2061835
  24. Jang, H., Kuroda, S. and Kim, H. J., 2011b, SVD Inversion of Zero-Offset Profiling Data Obtained in the Vadose Zone Using Cross-Borehole Radar, IEE Transactions on Geoscience and Remote Sensing 49(10), 3849-3855. https://doi.org/10.1109/TGRS.2011.2134855
  25. Kim, C. R., 2004, Experiments on the GPR Reposnse of the Organic Hydrocarbons, The Korean Society of Economic and Environmental Geology, 37(2), 185-193.
  26. Kim, J. H., Yi, M. J., Son, J. S., Cho, S. J. and Park, S. G., 2005, Effective 3-D GPR Survey for the Exploration of Old Remains, Journal of the Korean Geophysical society, 8(4), 262-269.
  27. Kim, H.-S. and Kim, J.-Y., 2008, High-Resolution Profiling of Alluvial Aquifer in Potential Riverbank Filtration Site by Use of Combining CMP Refraction and Reflection Seismic Methods, Applied Geophysics 66, 1-14. https://doi.org/10.1016/j.jappgeo.2008.08.003
  28. Kim, S. G. and Oh, H. D., 2003, Application of GPR to Prospect Archaeological Remains, The Journal of Engineering Geology, 13(4), 475-490.
  29. Kuroda, S., Jang, H. and Kim, H.J., 2009, Time-lapse borehole rata monitoring of an infiltration experiment in the vadose zone, Journal of applied geophysics, 67(4), 361-366. https://doi.org/10.1016/j.jappgeo.2008.07.005
  30. Lee D.-R., Hong, J.-S., Back, K.-S. and Bae, K.-H., 2006, Improve of Reservoir Dredging Ability Using GPS/GPR, The Journal of GIS association of Korea, 14(1), 57-65.
  31. Lu, Q. and Sato, M., 2004, Estimation of hydraulic property of unconfined aquifer by GPR, GPR 2004, Proceedings of the Tenth Internationerence on, 715-718.
  32. Lu, Q. and Sato, M., 2007, Estimation of Hydraulic Property of an Unconfined Aquifer by GPR, Sensing and Imaging: Ana international journal, 8(2), 83-99. https://doi.org/10.1007/s11220-007-0035-x
  33. Nishimura, Y. and Goodman, D., 1993, A ground radar view of Japanese burial mounds : Antiquity, 67.
  34. Noh, M. G., Oh, S. H. and Jang, B. S., 2009, Integrated Application of GPR, IE and IR Methods to Detection of the Rear Cavity of Concrete, Korean Society of Earth and Exploration Geophysicists, 13(4), 338-346.
  35. Oh, H. D. and Shin, J. W., 2004, Archaeological Interpretation of GPR Data Applied on Wolseong fortress in Gyeongju, Journal of the Korean Geophysical society, 7(4), 256-261.
  36. Onish, K., Yokota, T., Maekawa, S., Toshioka, T. and Rokugawa, S., 2005, Highly efficient CMP surveying with ground-penetrating radar utilising real-time kinematic GPS, Exploration Geophysics, 36, 59-66. https://doi.org/10.1071/EG05059
  37. Porsani, J. L., Elis, V. R. and Hiodo, F. Y., 2005, Geophysical investigations for the characterization of fractured rock aquifers in ltu, SE Brazil, Journal of applied geophysics, 57(2), 119-128. https://doi.org/10.1016/j.jappgeo.2004.10.005
  38. Pyke, K., Eyuboglu, S., Daniels, J. J. and Vendl, M., 2008, A Controlled Experiment to Determine the Water Table Response Using Ground Penetrating Radar, Journal of Environmental and Engineering Geophysics, 13(4), 335-342. https://doi.org/10.2113/JEEG13.4.335
  39. Reynolds, J. M., 1997, Introduction to Applied and Environmental Geophysics, John Wiley, New York, 681-749.
  40. Shin, J. W., Oh, H. D. and Kim, D. H., 2011, Study on GPR Prospecting Utilization for Fire-Prevention System of Gyeongbok Palace, nal of the Korean society of hazard mitigation, 11(5), 213-218. https://doi.org/10.9798/KOSHAM.2011.11.5.213
  41. Steeples, D. W. and Miller, R. D., 1990, Seismic reflection methods applied to engineering, environmental, and groundwater problems in Ward, Stanley H., ed. Geotechnical and environmental geophysics: V.1, Society of Exploration Geophysicists Investigations in Geophysics, v.5, 1-30.
  42. Stockwell, J. W. and Cohen J. K., 2002, The New SU User's Manual Version 3.2, Colorado School of Mines Golden, CO 80401, USA, 141.
  43. Terzaghi, K., and Peck, R. B., 1967, Soil mechanics in engineering practice (2nd ed) John Wiley & Sons, N.Y., 729p.
  44. Yilmaz, O., 1987. Seismic Data Processing, Society of Exploration Geophysicists, 155-182.
  45. Yun, W. S., Bae, S. H., Kim, B. C. and Kim, H. S., 1995, Application of GPR Technology for Detecting Bedrock under Conductive Overburden and Geological Survey, Tunnel & Underground, Journal of Korean Society for Rock Mechanics. 5(2), 114-122.

Cited by

  1. Relationship Analysis of Volumetric Water Content According to the Dielectric Constant for Stability Analysis of Ground Excavation vol.19, pp.3, 2016, https://doi.org/10.7582/GGE.2016.19.3.153
  2. 개착식 굴착현장의 GPR 탐사한계 분석기법 연구 vol.10, pp.1, 2013, https://doi.org/10.21729/ksds.2017.10.1.47
  3. 지하수 주입실험을 통한 도로노면 하부의 공동 확장 평가 vol.18, pp.3, 2013, https://doi.org/10.12814/jkgss.2019.18.3.079
  4. 도로하부 공동 내의 지하수 주입 실험을 통한 공동 영역 변화 연구 vol.16, pp.2, 2020, https://doi.org/10.15683/kosdi.2020.06.30.267