DOI QR코드

DOI QR Code

Comparative Assessment on Indicating Factor for Biomineralization by Bacillus Species

Bacillus종의 생광물화에 미치는 영향 인자의 비교 평가

  • Seok, Hee-Jeong (Department of Environmental Engineering, Inha University) ;
  • Kim, Chang-Gyun (Department of Environmental Engineering, Inha University)
  • 석희정 (인하대학교 환경공학과) ;
  • 김창균 (인하대학교 환경공학과)
  • Received : 2013.01.15
  • Accepted : 2013.02.27
  • Published : 2013.03.30

Abstract

This study was conducted to comparatively assess quantitative indicating factor for biomineralization characterizing $CO_2$ mineralization on three type of minerals (i.e., $CaCl_2$, $MgCl_2$, $CaCl_2-MgCl_2$) in an aqueous solution amended with Bacillus pasteurii or indigenous microorganisms for a S landfill cover soil. For given three types of minerals, $NH_4{^+}$ (urease activity) was released at the highest of 88 mg/L for $MgCl_2$, then 85 mg/L for $CaCl_2$, and the lowest of 42 mg/L for $CaCl_2-MgCl_2$. $CO_2$ gas in the head space was completely removed after 12, 12, and 24 hr for $CaCl_2$, $MgCl_2$ and $CaCl_2-MgCl_2$, respectively. $Ca^{2+}$ concentration in $CaCl_2$ solution was the quickest and the greatest decreased 92% for 12 hr whereas that in $CaCl_2-MgCl_2$ solution was lower at 85% for 36 hr. $Mg^{2+}$ concentration in $MgCl_2$ was more efficiently decreased at 46% for 48 hr than that of $CaCl_2-MgCl_2$ solution of 38.5% for 72 hr. Regardless of types of minerals or their concentration, pH was changed from 5.5 to 9 by biomineralization being progressed. Microbial activity ($OD_{600}$) was also changed from 0 to 0.6. SEM images indicated that spheroidal and trapezoid shape crystal were formed, which were identified as of $CaCO_3$ (Calcite) and $MgCO_3$ (Magnesite) by X-ray diffraction. In the long run, $NH_4{^+}$ (urease activity), $CO_2$ gas, $OD_{600}$, pH, $Ca^{2+}$ and $Mg^{2+}$ would be suitable for reasonable indicating factor in order to assess the degree of biomineralization efficiency.

본 연구에서는 생광물화에 미치는 주요한 영향 인자의 파악 및 광물별 생광물화 특성을 알아보기 위하여 $CaCl_2$, $MgCl_2$, $CaCl_2-MgCl_2$ 수용액을 이용하여 bottle test를 진행하였으며, 대상 미생물은 생광물화 관련 미생물 중 Bacillus pasteurii와 S 매립지 복토재 내 토착 미생물을 이용하였다. 광물 종류별 실험을 진행한 결과, $CaCl_2$, $MgCl_2$, $CaCl_2-MgCl_2$에 대해 각각 85, 88, 42 mg/L의 암모늄($NH_4{^+}$)이온이 생성되었고 이산화탄소 가스가 각각 12, 12, 24시간 후에 검출되지 않았다. 수용액 내 $Ca^{2+}$$CaCl_2$의 경우 12시간 후 92% 감소하였고 $CaCl_2-MgCl_2$의 경우 36시간 후 85% 감소하였다. 반면에 $Mg^{2+}$$MgCl_2$의 경우 48시간 후 46% 감소하였고 $CaCl_2-MgCl_2$의 경우 72시간 후 38.5% 감소하였다. 이온 농도 또는 광물의 종류에 관계없이, pH의 경우 생광물화가 일어난 실험군에서만 pH 5.5에서 pH 9로 변하는 것을 볼 수 있었고 미생물 활성도($OD_{600}$) 또한 0에서 0.6으로 증가했다. 실험 종료 후, 주사전자현미경(SEM) 사진을 촬영한 결과, 회전 타원체 모양의 결정체와 사다리꼴 모양의 결정체가 형성된 것을 확인할 수 있었으며, 이는 X-선 회절분석으로 확인된 $CaCO_3$ (Calcite)와 $MgCO_3$ (Magnesite)이었다. 본 연구 결과 urea를 이용한 생광물화능을 판단할 수 있는 영향인자로서 효소의 활성도, $CO_2$ gas 농도변화, $OD_{600}$, pH, 용액 내 칼슘(또는 마그네슘) 이온농도가 적합함을 확인하였다.

Keywords

References

  1. Kim, J., "Status and prospect of carbon dioxide storage technologies," KIC News, 12(2), 31-41(2009).
  2. Park, C. K., "Climate changes; Its impacts and our strategy to address it," J. Kor. Soc. Environ. Eng., 30(12), 1179-1183 (2008).
  3. Wang, S. K., "Geological carbon sequestration: Now and after," KIC News, 12(2), 1-10(2009).
  4. Chae, G. T., Yun, S. T., Choi, B. Y. and Kim, K. J., Shevailer, M., "Geochemical concept and technical development of geological $CO_2$ sequestration for reduction $CO_2$," Econ. Environ. Geol., 38(1), 1-2(2005).
  5. Min, D. H., "$CO_2$ biomineralization characteristics and its applicability for solidified sludge," Master of science dissertation, Inha University, Incheon, Korea(2011).
  6. Bond, G. M., Stringer, J., Brandvold, D. K., Simsek, F. A., Medina, M. G. and Egeland, G., "Development of integrated system for biomimetic $CO_2$ sequestration using the enzyme carbonic anhydrase," Energy Fuels, 15(2), 309-316(2001). https://doi.org/10.1021/ef000246p
  7. Mirjafari, P., Asghari, K. and Mahinpey, N., "Investigating the application of enzyme carbonic anhydrase for $CO_2$ sequestration purposes," Ind. Eng. Chem. Res., 46(3), 921-926 (2007). https://doi.org/10.1021/ie060287u
  8. Mari, V., Yoon, Y. I., Nam, S. C., Baek, I. H. and Jeong, S. K., "$CO_2$ conversion to $CaCO_3$ by immobilized carbonic anhydrase," KIC News, 15(2), 32-40(2012).
  9. Cacchio, P., Ercole, C., Cappuccio, G. and Lepidi, A., "Calcium carbonate precipitation by bacterial strains isolated from a limestone cave and from a loamy soil," Geomicrobiol. J., 20(2), 85-98(2003). https://doi.org/10.1080/01490450303883
  10. Whiffin, V. S., Van Paassen, L. A. and Harkes, M. P., "Microbial carbonate precipitation as a soil improvement technique," Geomicrobiol. J., 24(5), 417-423(2007). https://doi.org/10.1080/01490450701436505
  11. Jansson, C. and Northen, T., "Calcifying cyanobacteria-the potential of biomineralization for carbon capture and storage," Curr. Opin. Biotechnol., 21(3), 365-371(2010). https://doi.org/10.1016/j.copbio.2010.03.017
  12. Lian, B., Hu, Q., Chen, J., Ji. J. and Teng, H. H., "Carbonate biomineralization induced by soil bacterium Bacillus megaterium," Geochim. Cosmochim. Acta, 70(22), 5522-5535 (2006). https://doi.org/10.1016/j.gca.2006.08.044
  13. Castanier, S., Metayer-Levrel, G. L. and Perthuisot, J. P.,. "Ca-carbonates precipitation and limestone genesis-the microbiogeologist point of view," Sedimentary Geol., 126(1-4), 9-23 (1999). https://doi.org/10.1016/S0037-0738(99)00028-7
  14. Al - Thawadi, S. M., "Ureolytic bacteria and calcium carbonate formation as a mechanism of strength enhancement of sand," J. Adv. Sci. Eng. Res., 1(1), 98-114(2011).
  15. Jahns, T., "Ammonium/urea-dependent generation of a proton electrochemical potential and synthesis of ATP in Bacillus pateurii," J. Bacteriol., 178(2), 403-409(1999).
  16. Li, W., Liu, L. P., Zhou, P. P., Cao, L., Yu, L. J. and Jiang, S. Y., "Calcite precipitation induced by bacteria and bacterially produced carbonic anhydrase," Curr. Sci., 100(4), 502- 509(2011).
  17. Achal, V. and Pan, X., "Characterization of urease and carbonic anhydrase producing bacteria and their role in calcite precipitation," Curr. Microbiol., 62(3), 894-902(2011). https://doi.org/10.1007/s00284-010-9801-4
  18. Kim, D. H., "Study on the capture of carbon dioxide using biocatalysts," Master of science dissertation, Korea University, Seoul, Korea(2011).
  19. Stocks-Fischer, S., Galinat, J. K., and Bang, S. S., "Microbiological precipitation of $CaCO_3$," Soil Biol. Biochem., 31(11), 1563-1571(1999). https://doi.org/10.1016/S0038-0717(99)00082-6
  20. Clesceri, L. S., Greenberg, A. E. and Eaton, A. D., Standard Methods for the Examination of Water and Wastewater. 20 ed., American Public Health Association: Washington D. C., (1998).
  21. Kwak, W. J., "Evaluation of nigrogen removal efficiency for low strength wastewater with ANAMMOX process," Master of science dissertation, Inha University, Incheon, Korea (2012).
  22. Wikipedia, http://en.wikipedia.org/wiki/Clostridium_sporogenes, October(2011).
  23. Kandeler, E. and Gerber, H., "Short-term assay of soil urease activity using colorimetric determination of ammonium," Biol. Fertil. Soils, 6(1), 68-72(1988).
  24. Mitchell, A. C., Dideriksen, K., Spangler, L. H., Cunningham, A. B. and Gerlach, R., "Microbially enhanced carbon capture and storage by mineral-trapping and solubility-trapping," Environ. Sci. Technol., 44(13), 5270-5276(2010). https://doi.org/10.1021/es903270w
  25. Zhang, Y. and Dawe, R. A., "Influence of $Mg^{2+}$ on the kinetics of calcite precipitation and calcite crystal morphology," Chem. Geol., 163(1-4), 129-138(2000). https://doi.org/10.1016/S0009-2541(99)00097-2
  26. Warren, L. A., Maurice, P. A., Parmar, N. and Ferris, F. G., "Microbially mediated calcium carbonate precipitation: Implications for interpreting calcite precipitation and for solid - phase capture of inorganic contaminants," Geomicrobiol. J., 18(1), 93-115(2001). https://doi.org/10.1080/01490450151079833