DOI QR코드

DOI QR Code

Analysis of Spatial Precipitation Field Using Downscaling on the Korean Peninsula

상세화 기법을 통한 한반도 공간 강우장 분석

  • Cho, Herin (Department of Civil and Environmental Engineering, Hanyang University) ;
  • Hwang, Seokhwan (Water Resources Research Division, Korea Institute of Construction Technology) ;
  • Cho, Yongsik (Department of Civil and Environmental Engineering, Hanyang University) ;
  • Choi, Minha (Department of Civil and Environmental Engineering, Hanyang University)
  • 조혜련 (한양대학교 공과대학 건설환경공학과) ;
  • 황석환 (한국건설기술연구원 수자원연구실) ;
  • 조용식 (한양대학교 공과대학 건설환경공학과) ;
  • 최민하 (한양대학교 공과대학 건설환경공학과)
  • Received : 2013.08.26
  • Accepted : 2013.11.13
  • Published : 2013.11.30

Abstract

Precipitation is one of the important factors in the hydrological cycle. It needs to understand accurate of spatial precipitation field because it has large spatio-temporal variability. Precipitation data obtained through the Tropical Rainfall Monitoring Mission (TRMM) 3B43 product is inaccurate because it has 25 km space scale. Downscaling of TRMM 3B43 product can increase the accuracy of spatial precipitation field from 25 km to 1 km scale. The relationship between precipitation and the normalized difference vegetation index(NDVI) (1 km space scale) which is obtained from the Moderate Resolution Imaging Spectroradiometers (MODIS) sensor loaded in Terra satellite is variable at different scales. Therefore regression equations were established and these equations apply to downscaling. Two renormalization strategies, Geographical Difference Analysis (GDA) and Geographical Ratio Analysis (GRA) are implemented for correcting the differences between remote sensing-derived and rain gauge data. As for considering the GDA method results, biases, the root mean-squared error (RMSE), MAE and Index of agreement (IOA) is equal to 4.26 mm, 172.16 mm, 141.95 mm, 0.64 in 2009 and 17.21 mm, 253.43 mm, 310.56 mm, 0.62 in 2011. In this study, we can see the 1km spatial precipitation field map over Korea. It will be possible to get more accurate spatial analysis of the precipitation field through using the additional rain gauges or radar data.

강우는 수문 순환에서 중요한 요소 중에 하나로 시 공간적 변동성이 크므로 정확한 공간 강우장의 파악이 요구된다. 열대강우 관측 위성(Tropical Rainfall Monitoring Mission, TRMM)에서 제공하는 3B43 월 누적 강우량 자료는 25 km의 공간 해상도를 갖고 있어 공간 강우장의 정확성을 높이기 위해 상세화 기법을 적용하여 1 km의 공간 해상도로 생성하였다. Terra 위성에 탑재된 MODIS (Moderate Resolution Imaging Spectroradiometers) 센서가 제공하는 정규식생지수(Normalized Difference Vegetation Index, NDVI) (공간 해상도 1 km)와 강우 자료의 관계성을 회귀식으로 나타냈고 상세화 기법에 적용하였다. 이에 따른 결과를 지점과 위성 강우 자료와의 차이를 통해 보정하는 방법인 GDA (Geographical Difference Analysis)와 지점과 위성 강우 자료와의 비율로 편차를 보정하는 GRA (Geographical Ratio Analysis) 상세화 기법을 사용하여 공간 강우장을 나타내었다. 우리나라의 공간 강우장 결과를 지점 자료를 기준으로 비교 검증을 실시하였다. 그 결과 GDA 상세화 기법의 경우가 2009년(Bias=4.26 mm, RMSE=172.16 mm, MAE=141.95 mm, IOA=0.64), 2011년(Bias=17.21 mm, RMSE=253.43 mm, MAE=310.56 mm, IOA=0.62)으로 가장 잘 맞는 것으로 나타났다. 이를 바탕으로 우리나라의 공간 강우장을 1 km의 공간 해상도로 파악할 수 있었으며, 더 나아가 지점의 수를 늘려 보정을 정밀하게 하거나, 강우 레이더 자료를 가지고 상세화 기법을 적용한다면 더욱 정확한 공간 강우장을 파악할 수 있을 것이다.

Keywords

References

  1. Aalto, J., Pirinen, P., Heikkinen, J., and Venalainen, A. (2013). "Spatial interpolation of monthly climate data for Finland: comparing the performance of kriging and generalized additive models." Theoretical Applied Climatology, Vol. 112, No. 1-2, pp. 99-111. https://doi.org/10.1007/s00704-012-0716-9
  2. Baek, J.J., Byun, K.H, Kim, D.K., and Choi, M.H. (2013), "Assessment of Solar Insolation from COMS : Sulma and Cheongmi Watersheds." Korean Journal of Remote Sensing, Vol. 29, No. 1, pp. 137-150. https://doi.org/10.7780/kjrs.2013.29.1.13
  3. Boushaki, F.I., Hsu, K.L., Sorooshian, S., Park, G.H., Mahani, S., and Shi, W. (2009). "Bias Adjustment of Satellite Precipitation Estimation Using Ground-Based Measurement : A Case Study Evaluation over the Southwestern United States." Journal of Hydrometeorology, Vol. 10, No. 5, pp. 1231-1242. https://doi.org/10.1175/2009JHM1099.1
  4. Cheema, M.J.M., and Bastiaanssen, W.G.M. (2012). "Local calibration of remotely sensed rainfall from the TRMM satellite for different periods and spatial scales in the Indus Basin." International Journal of Remote Sensing, Vol. 33, No. 8, pp. 2603-2627. https://doi.org/10.1080/01431161.2011.617397
  5. Choi, M.H., and Hur, Y.M. (2012), "A microwave-optical/infrared disaggregation for improving spatial representation of soil moisture using AMSR-E and MODIS products." Remote Sensing of Environment, Vol. 124, pp. 259-269. https://doi.org/10.1016/j.rse.2012.05.009
  6. de Amorim, P.B., Franke, J., Tanaka, M., Weiss, H., and Bernhofer, C. (2013). "Spatial Interpolation of Climatological Information: Comparison of Methods for the Development of Precipitation Distribution in Distrito Federal, Brazil." Atmospheric and Climate Sciences, Vol. 3, No. 2, pp. 208-217. https://doi.org/10.4236/acs.2013.32022
  7. Duan, Z., and Bastiaanssen, W.G.M. (2013). "First results from Version 7 TRMM 3B43 precipitation product in combination with a new downscaling-calibration procedure." Remote Sensing of Environment, Vol. 131, pp. 1-13. https://doi.org/10.1016/j.rse.2012.12.002
  8. Erxleben, J., Elder, K., and Davis, R. (2002). "Comparison of spatial interpolation methods for estimating snow distribution in the Colorado Rocky Mountains." Hydrological Processes, Vol. 16, No. 18, pp. 3627-3649. https://doi.org/10.1002/hyp.1239
  9. Ho, C.H., and Kang, I.S. (1988). "The Variability of Precipitation In Korea." Journal of Korean Meteorological Society, Vol. 24, No. 1, pp. 38-48.
  10. Hong, K.O., Suh, M.S., Rha, D.K., Chang, D.H., Kim, C., and Kim, M.K. (2007). "Estimation of High Resolution Gridded Temperature Using GIS and PRISM." Korean Meteorological Society, Vol. 17, No. 3, pp. 255-268.
  11. Huffman, G.J., Adler, R.F., Bolvin, D.T., Gu, G., Nelkin, E.J., Bowman, K.P., Hong, Y., Stocker, E.F., and Wolff, D.B. (2007). "The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-Global, Multiyear, Combined-Sensor Precipitation Estimates at Fine Scales." Journal of Hydrometeorology, Vol. 8, No. 1, pp. 38-55. https://doi.org/10.1175/JHM560.1
  12. Hwang, Y.S., Jung, Y.H., Lim, K.W., and Heo, J,H. (2010). "Comparison of Daily Rainfall Interpolation Techniques and Development of Two Step Technique for Rainfall-Runoff Modeling." Journal of Korea Water Resources Association, Vol. 43, No. 12, pp. 1083-1091. https://doi.org/10.3741/JKWRA.2010.43.12.1083
  13. Immerzeel, W.W., Rutten, M.M., and Droogers, P. (2009). "Spatial downscaling of TRMM precipitation using vegetative response on the Iberian Peninsula." Remote Sensing of Environment, Vol. 113, No. 2, pp. 362-370. https://doi.org/10.1016/j.rse.2008.10.004
  14. Jang, C.H. (2002). Adjustment of TRMM/PR Data By Ground Observed Data and SCS Runoff Estimation: Yongdam-Dam watershed. Master dissertation, Konkuk University, pp. 23-54.
  15. Jia, S., Zhu, W., Lu, A., and Yan, T. (2011). "A statistical spatial downscaling algorithm of TRMM precipitation based on NDVI and DEM in the Qaidam Basin of China." Remote Sensing of Environment, Vol. 115, No. 12, pp. 3069-3079. https://doi.org/10.1016/j.rse.2011.06.009
  16. Kim, B.S., Hong, J.B., Kim, H.S., and Choi, K.H. (2007). "Combining Radar and Rain Gauge Rainfall Estimates for Flood Forecasting Using Conditional Merging Method." Korean Society of Civil Engineers, Vol. 27, No. 3B, pp. 255-265.
  17. Kim, J.P., Kim G.S., and Lee, W.S. (2012). "Estimation of Monthly Areal Precipitation using Daymet and PRISM." Journal of Korean Society of Hazard Mitigation, Vol. 12, No. 5, pp. 83-90. https://doi.org/10.9798/KOSHAM.2012.12.5.083
  18. Kozu, T., Iguchi, T., Meneghini, R., Awaka, J., and Okamoto, K. (1998). "Preliminary test results of a rain rate profiling algorithm for the TRMM Precipitation Radar." Microwave Remote Sensing of the Atmosphere and Environment, Vol. 86, pp. 86-93.
  19. Li, M., and Shao, Q. (2010). "An improved statistical approach to merge satellite rainfall estimates and raingauge data." Journal of Hydrology, Vol. 385, No. 1, pp. 51-64. https://doi.org/10.1016/j.jhydrol.2010.01.023
  20. Nalder, I.A., and Wein, R.W. (1998). "Spatial interpolation of climatic Normals: test of a new method in the Canadian boreal forest." Agricultural and Forest Meteorology, Vol. 92, No. 4, pp. 211-225. https://doi.org/10.1016/S0168-1923(98)00102-6
  21. Park, H.S., Chung, H.S., and Noh, Y.J. (2000), "The Characteristics of Heavy Rainfall in Summer over the Korean Peninsula from Precipitation Radar of TRMM Satellite : Case Study." Journal of the Korean Society of Remote Sensing, Vol. 16, No. 1, pp. 55-64.
  22. Prakash, S., and Gairola, R.M. (2013). "Validation of TRMM-3B42 precipitation product over the tropical Indian Ocean using rain gauge data from the RAMA buoy array." Theoretical and Applied Climatology, pp. 1-10, Doi. 10.1007/s00704-013-0903-3.
  23. Sinclair, S., and Pegram, G. (2005). "Combining radar and rain gauge rainfall estimates using conditional merging." Atmospheric Science Letters, Vol. 6, No. 1, pp. 19-22, Doi. 10.1002/asl.85.
  24. Xue, X., Hong, Y., Limaye, A.S., Gourley, J.J., Huffman, G.J., Khan, S.I., Dorji, C., and Chen, S. (2013). "Statistical and hydrological evaluation of TRMM-based Multi-satellite Precipitation Analysis over the Wangchu Basin of Bhutan: Are the latest satellite precipitation products 3B42V7 ready for use in ungauged basins?" Journal of Hydrology, Vol. 499, pp. 91-99. https://doi.org/10.1016/j.jhydrol.2013.06.042

Cited by

  1. Validation of Extreme Rainfall Estimation in an Urban Area derived from Satellite Data : A Case Study on the Heavy Rainfall Event in July, 2011 vol.47, pp.4, 2014, https://doi.org/10.3741/JKWRA.2014.47.4.371
  2. Downscaling of AMSR2 Sea Ice Concentration Using a Weighting Scheme Derived from MODIS Sea Ice Cover Product vol.30, pp.5, 2014, https://doi.org/10.7780/kjrs.2014.30.5.13
  3. Development of Multisite Spatio-Temporal Downscaling Model for Rainfall Using GCM Multi Model Ensemble vol.35, pp.2, 2015, https://doi.org/10.12652/Ksce.2015.35.2.0327
  4. Validation of Multi-satellite Precipitation Products for Assessing their Potential Utility of Hydrological Application Over South Korea vol.14, pp.2, 2014, https://doi.org/10.9798/KOSHAM.2014.14.2.85