DOI QR코드

DOI QR Code

Exergy Analysis of Vapor Compression Cycle Driven by Organic Rankine Cycle

유기랭킨사이클로 구동되는 증기압축냉동사이클의 엑서지 해석

  • Kim, Kyoung Hoon (Dept. of Mechanical Engineering, Kumoh Nat'l Institute of Technology)
  • 김경훈 (금오공과대학교 기계공학과)
  • Received : 2013.05.27
  • Accepted : 2013.10.11
  • Published : 2013.12.01

Abstract

In this study, exergy analysis of a thermally activated refrigeration cycle, a combined organic Rankine cycle (ORC), and a vapor compression cycle (VCC) were conducted. It is considered that a system uses a low-temperature heat source in the form of sensible heat, such as various renewable energy sources or waste heat from industries, and one of eight working fluids: R143a, R22, R134a, propane, isobutane, butane, R245fa, or R123. The effects of turbine inlet pressure and the working fluid selected on the exergy destructions (anergies) at various system components as well as the COP and exergy efficiency of the system were analyzed and discussed. The results show that the component of the greatest exergy destruction in the system varies sensitively with the turbine inlet pressure and/or working fluid.

본 연구에서는 열 구동 냉동사이클로서 유기 랭킨사이클 (ORC)과 증기 압축 냉동사이클(VCC)의 복합 사이클에 대한 엑서지 해석을 수행하였다. 시스템의 열원으로는 다양한 재생 에너지 열원이나 산업체에서의 폐열 등 현열 형태의 저온 열원을 고려하였으며 작동유체로서 R143a, R22, R134a, 프로판, 이소부탄, 부탄, R245fa 및 R123 등 여덟가지 작동유체들을 고려하였다. 터빈 입구 압력의 변화나 작동유체의 종류에 따라 시스템의 COP 나 엑서지 효율은 물론 시스템의 각 요소에서의 엑서지 파괴 (아너지)에 미치는 다양한 영향에 대해 분석하고 논의하였다. 해석 결과는 주어진 열원 온도에 대해 시스템에서 가장 엑서지 파괴가 큰 구성 요소는 터빈 입구 압력과 작동유체에 따라 민감하게 변화하는 사실을 보여준다.

Keywords

References

  1. Prisyazhnink, V. A., 2008, "Alternative Tends in Development of Thermal Power Plant," App. Therm. Eng., Vol. 28, pp. 190-194. https://doi.org/10.1016/j.applthermaleng.2007.03.025
  2. Nowak, W., Stachel, A. A. and Borsukiewicz - Gozdur, A., 2008, "Possibilities of Implementation of a Absorption Heat Pump in Realization of the Clausius-Rankine Cycle in Geothermal Power Station," App. Therm. Eng., Vol. 28, pp. 335-340. https://doi.org/10.1016/j.applthermaleng.2006.02.031
  3. Kim, K. H., Han, C. H. and Kim, K., 2012, "Effects of Ammonia Concentration on the Thermodynamic Performances of Ammonia-Water Based Power Cycles," Thermochimica Acta, Vol. 530, No. 20, 2012, pp. 7-16. https://doi.org/10.1016/j.tca.2011.11.028
  4. Bao, J. and Zhao, L., 2013, "A Review of Working Fluid and Expander Selections for Organic Rankine Cycle," Renewable and Sustainable Energy Reviews, Vol. 24, pp. 325-342. https://doi.org/10.1016/j.rser.2013.03.040
  5. Quoilin, S., Broek, M. V. D., Declaye, S., Dewallef, P. and Lemort, V., 2013, "Techno-Economic Survey of Organic Rankine Cycle (ORC) Systems," Renewable and Sustainable Energy Reviews, Vol. 22, pp. 164-186.
  6. Aghahosseini, S. and Dincer, I., 2013, "Comparative Performance Analysis of Low-Temperature Organic Rankine Cycle (ORC) Using Pure and Zeotropic Working Fluids," App. Therm. Eng, Vol. 54, pp. 35-42. https://doi.org/10.1016/j.applthermaleng.2013.01.028
  7. Hung, T. C., Wang, S. K., Kuo, C. H., Pei, B. S., Tsai, K. F., 2010, "A Study of Organic Working Fluids on System Efficiency of an ORC Using Low-Grade Energy Sources," Energy, Vol. 35, pp. 1403-1411. https://doi.org/10.1016/j.energy.2009.11.025
  8. Delgadotorres, A. and Garciarodriguez, L., 2007, "Double Cascade Organic Rankine Cycle for Solar- Driven Reverse Osmosis Desalination," Desalination, Vol. 216, pp. 306-313. https://doi.org/10.1016/j.desal.2006.12.017
  9. Tchanche, B. F., Papadakis, G. and Frangoudakis, A., 2009, "Fluid Selection for a Low- Temperature Solar Organic Rankine Cycle," App. Therm. Eng., Vol. 29, pp. 2468-2476. https://doi.org/10.1016/j.applthermaleng.2008.12.025
  10. Kim, K. H. and Han, C. H., 2012, "Analysis of Transcritical Organic Rankine Cycles for Low-Grade Heat Conversion," Adv. Sci. Lett., Vol. 8, pp. 216-221. https://doi.org/10.1166/asl.2012.2404
  11. Lujan, J. M., Serrano, J. R., Dolz, V. and Sanchez, J., 2012, "Model of the Expansion Process for R145fa in an Organic Rankine Cycle (ORC) ," App. Therm. Eng., Vol. 40, pp. 248-257. https://doi.org/10.1016/j.applthermaleng.2012.02.020
  12. Kang, S. H., 2012, "Design and Experimental Study of ORC (organic Rankine cycle) and Radial Turbine Using R145fa Working Fluid," Energy, Vol. 41, pp. 514-524. https://doi.org/10.1016/j.energy.2012.02.035
  13. Sun, D. W., 1997, "Solar Powered Combined Ejector-Vapour Compression Cycle for Air Conditioning and Refrigeration," Energy Conv. and Mgmt., Vol. 38, pp. 479-491. https://doi.org/10.1016/S0196-8904(96)00063-5
  14. Vidal, H. and Colle, S., 2010, "Simulation and Economic Optimization of a Solar Assisted Combined Ejector-Vapor Compression Cycle for Cooling Applications," App. Therm. Eng., Vol. 30, pp. 478-486. https://doi.org/10.1016/j.applthermaleng.2009.10.008
  15. Aphornratana, S. and Sriveerakul, T., 2010, "Analysis of a Combined Rankine-Vapor-Compression Refrigeration cycle," Energy Conv. Mgmt, Vol. 51, pp. 2557-2564. https://doi.org/10.1016/j.enconman.2010.04.016
  16. Wang, H., Peterson, R., Harada, K., Miller, E., Ingram-Goble, R. and Fisher, L., 2011, "Performance of a Combined Organic Rankine Cycle and Vapor Compression Cycle for Heat Activated Cooling," Energy, Vol. 36, pp. 447-458. https://doi.org/10.1016/j.energy.2010.10.020
  17. Wang, H., Oeterson, R. and Herron, T., 2011, "Design Study of Configurations on System COP for a Combined ORC and VCC," Energy, Vol. 36, pp. 4809-4820. https://doi.org/10.1016/j.energy.2011.05.015
  18. Kim, K. H., Jin, J. Y. and Ko, H. J., 2012, "Performance Analysis of a Vapor-Compression Cycle Driven by Organic Rankine Cycle," Trans. of the Korean Society of Hydrogen Energy, Vol. 23, pp. 521-529. https://doi.org/10.7316/KHNES.2012.23.5.521
  19. Baghernejad, A. and Yaghoubi, M., 2010, "Exergy Analysis of an Integrated Solar Combined Cycle System," Renewable Energy, Vol. 35, pp. 2157-2164. https://doi.org/10.1016/j.renene.2010.02.021
  20. Kim, K. H., Ko, H. J. and Perez-Blanco, H., 2011, "Exergy Analysis of Gas-Turbine Systems with High- Fogging Compression," Int. J. Exergy, Vol. 8, pp. 16-32. https://doi.org/10.1504/IJEX.2011.037212
  21. Kim, K. H. and Kim, K., 2012, "Exergy Analysis of Overspray Process in Gas Turbine Systems," Energies, Vol. 5, pp. 2745-2758. https://doi.org/10.3390/en5082745
  22. Bao, J. and Zhao, L., 2012, "Exergy Analysis and Parameter Study on a Novel Auto-Cascade Rankine Cycle," Energy, Vol. 48, pp. 539-547. https://doi.org/10.1016/j.energy.2012.10.015
  23. Kim, K. H., Han, C. H. and Kim, K., 2013, "Comparative Exergy Analysis of Ammonia-Water Based Rankine Cycles with and Without Regeneration," Int. J. Exergy, Vol. 12, pp. 344-361. https://doi.org/10.1504/IJEX.2013.054117
  24. Yang, T., Chen, G. J. and Gou, T. M., 1997, "Extension of the Wong-Sandler Mixing rule to the Three-Parameter Patel-Teja Equation of State: Application up to the Near-Critical Region," Chem. Eng. J., Vol. 67, pp. 27-36. https://doi.org/10.1016/S1385-8947(97)00012-0
  25. Gao, J., Li, L. D. and Ru, S. G., 2004, "Vapor- Liquid Equilibria Calculation for Asymmetric Systems Using Patel-Teja Equation of State with a New Mixing Rule," Fluid Phase Equilibrium, Vol. 224, pp. 213-219. https://doi.org/10.1016/j.fluid.2004.05.007
  26. Yaws, C. L., 1999, "Chemical properties handbook," McGraw-Hill.
  27. Kim, K. H, Ko, H. J. and Kim, K., 2013, "Assessment of Pinch Point Characteristics in Heat Exchangers and Condensers of Ammonia-Water Based Power Cycles," Applied Energy, Vol. 113, pp. 970-981.
  28. Kim, K. H., 2011, Theoretical Characteristics of Thermodynamic Performance of Combined Heat and Power Generation with Parallel Circuit Using Organic Rankine Cycle," J. Korea Solar Energy Soc., Vol. 31, pp. 49-56. https://doi.org/10.7836/kses.2011.31.6.049
  29. Bao, J. and Zhao, L., 2013, "A Review of Working Fluid and Expander Selections for Organic Rankine Cycle," Renewable and Sustainable Energy Reviews, Vol. 24, pp. 325-342. https://doi.org/10.1016/j.rser.2013.03.040

Cited by

  1. Thermodynamic Performance Characteristics of Organic Rankine Cycle (ORC) using LNG Cold Energy vol.18, pp.2, 2014, https://doi.org/10.7842/kigas.2014.18.2.41
  2. Thermodynamic Performance Analysis of Ammonia-Water Power Generation System Using Low-temperature Heat Source and Liquefied Natural Gas Cold Energy vol.38, pp.6, 2014, https://doi.org/10.3795/KSME-B.2014.38.6.483
  3. Thermodynamic Performance Analysis of a Cogeneration System in Series Circuit Using Regenerative ORC vol.26, pp.3, 2015, https://doi.org/10.7316/KHNES.2015.26.3.278
  4. Thermodynamic Performance Analysis of Regenerative Organic Rankine Cycle using Turbine Bleeding vol.26, pp.4, 2015, https://doi.org/10.7316/KHNES.2015.26.4.377