DOI QR코드

DOI QR Code

Bankruptcy prediction using ensemble SVM model

앙상블 SVM 모형을 이용한 기업 부도 예측

  • Choi, Ha Na (Department of Information Statistics, Gyeongsang National University) ;
  • Lim, Dong Hoon (Department of Information Statistics, Gyeongsang National University)
  • 최하나 (경상대학교 정보통계학과) ;
  • 임동훈 (경상대학교 정보통계학과)
  • Received : 2013.06.24
  • Accepted : 2013.07.26
  • Published : 2013.11.30

Abstract

Corporate bankruptcy prediction has been an important topic in the accounting and finance field for a long time. Several data mining techniques have been used for bankruptcy prediction. However, there are many limits for application to real classification problem with a single model. This study proposes ensemble SVM (support vector machine) model which assembles different SVM models with each different kernel functions. Our ensemble model is made and evaluated by v-fold cross-validation approach. The k top performing models are recruited into the ensemble. The classification is then carried out using the majority voting opinion of the ensemble. In this paper, we investigate the performance of ensemble SVM classifier in terms of accuracy, error rate, sensitivity, specificity, ROC curve, and AUC to compare with single SVM classifiers based on financial ratios dataset and simulation dataset. The results confirmed the advantages of our method: It is robust while providing good performance.

기업의 부도를 예측하는 것은 회계나 재무 분야에서 중요한 연구주제이다. 지금까지 기업 부도예측을 위해 여러 가지 데이터마이닝 기법들이 적용되었으나 주로 단일 모형을 사용함으로서 복잡한 분류 문제에의 적용에 한계를 갖고 있었다. 본 논문에서는 최근에 각광받고 있는 SVM (support vector machine) 모형들을 결합한 앙상블 SVM 모형 (ensemble SVM model)을 부도예측에 사용하고자 한다. 제안된 앙상블 모형은 v-조각 교차 타당성 (v-fold cross-validation)에 의해 얻어진 여러 가지 모형 중에서 성능이 좋은 상위 k개의 단일 모형으로 구성하고 과반수 투표 방식 (majority voting)을 사용하여 미지의 클래스를 분류한다. 본 논문에서 제안된 앙상블 SVM 모형의 성능을 평가하기 위해 실제 기업의 재무비율 자료와 모의실험자료를 가지고 실험하였고, 실험결과 제안된 앙상블 모형이 여러 가지 평가척도 하에서 단일 SVM 모형들보다 좋은 성능을 보임을 알 수 있었다.

Keywords

References

  1. Altman, E. (1968). Financial ratios, discriminant analysis and the prediction of corporate bankruptcy. The Journal of Finance, 23, 589-609. https://doi.org/10.1111/j.1540-6261.1968.tb00843.x
  2. Altman, E. (1983). Corporate financial distress: A complete guide to predicting, avoiding and dealing with bankruptcy, John Wiley and Sons, Inc., New York.
  3. Anandarajan, M., Lee, P. and Anandarajan. A. (2004). Bankruptcy predication using neural networks. In Business Intelligence Techniques: A Perspective from Accounting and Finance, edited by M. Anandarajan, A. Anandarajan and C. Srinivasan, Springer-Verlag, Germany.
  4. Bellovary, J., Giacomino, D. and Akers, M. (2007). A review of bankruptcy prediction studies: 1930 to present. Journal of Financial Education, 33, 1-11.
  5. Cook, N. R. (2008). Statistical evaluation of prognostic versus diagnostic models: Beyond the ROC curve. Clinical Chemistry, 54, 17-23.
  6. Dimitriadou, E., Hornik, K., Leisch, F., Meyer, D. and Weingessel. A. (2005). E1071: Misc functions of the department of statistics, Tu Wien. R package version 1.5-11.
  7. Egan, J. (1975). Signal decision theory and ROC analysis, Academic Press, New York.
  8. Eom, J. H., Kim, S. C. and Zhang, B. T. (2008). AptaCDSS-E: A classifier ensemble-based clinical decision support system for cardiovascular disease level prediction. Expert Systems with Applications, 34, 2465-2479. https://doi.org/10.1016/j.eswa.2007.04.015
  9. Kim, M. J. and Kang, D. K. (2012). Classifiers selection in ensembles using genetic algorithms for bankruptcy prediction. Expert Systems with Applications, 39, 9308-9314. https://doi.org/10.1016/j.eswa.2012.02.072
  10. Min, J. H. and Lee, Y. C. (2005). Bankruptcy prediction using support vector machine with optimal choice of kernel function parameters. Expert Systems with Applications, 28, 603-614. https://doi.org/10.1016/j.eswa.2004.12.008
  11. Ohlson, J. A. (1980). Financial ratios and the shirata's adjusted pattern according to the information probabilistic prediction of bankruptcy. Journal of Accounting Research, 109-131.
  12. Park, D., Yun, Y. and Yoon, M. (2012). Prediction of bankruptcy data using machine learning techniques. Journal of the Korean Data & Information Science Society, 23, 569-577. https://doi.org/10.7465/jkdi.2012.23.3.569
  13. Pietruszkiewicz, W. (2004). Application of discrete predicting structures in an early warning expert system for financial distress, Ph.D. Thesis, Faculty of Computer Science and Information Technology, Szczecin University of Technology, Szczecin.
  14. Pietruszkiewicz, W. (2008), Dynamical systems and nonlinear kalman filtering applied in classification. Proceedings of 2008 7th IEEE International Conference on Cybernetic Intelligent Systems, 263-68.
  15. Shin, K. S., Lee, T. S. and Kim, H. J. (2005). An application of support vector machines in bankruptcy prediction model. Expert Systems with Applications, 28, 127-35. https://doi.org/10.1016/j.eswa.2004.08.009
  16. Vapnik. V. (1995). The nature of statistical learning theory, Springer-Verlag, New York.
  17. Vapnik. V. (1998). Statistical learning theory, John Wiley and Sons, Inc., New York.
  18. Zhang, G., Hu, M. Y., Patuwo, B. E. and Indro, D. C. (1999). Artificial neural networks in bankruptcy prediction:General framework and cross-validation analysis. European Journal of Operational Research, 116, 16-32. https://doi.org/10.1016/S0377-2217(98)00051-4
  19. Zmijewski, M. E. (1984). Methodological issues related to the estimated of financial distress prediction models. Journal of Accounting Research, 22, 59-82. https://doi.org/10.2307/2490859

Cited by

  1. Randomized Bagging for Bankruptcy Prediction vol.15, pp.1, 2016, https://doi.org/10.9716/KITS.2016.15.1.153
  2. The research on daily temperature using continuous AR model vol.25, pp.1, 2014, https://doi.org/10.7465/jkdi.2014.25.1.155
  3. Improving an Ensemble Model by Optimizing Bootstrap Sampling vol.17, pp.2, 2016, https://doi.org/10.7472/jksii.2016.17.2.49
  4. 유전자 알고리즘 기반 통합 앙상블 모형 vol.23, pp.1, 2013, https://doi.org/10.21219/jitam.2016.23.1.045
  5. 딥러닝분석과 기술적 분석 지표를 이용한 한국 코스피주가지수 방향성 예측 vol.28, pp.2, 2017, https://doi.org/10.7465/jkdi.2017.28.2.287
  6. 머신러닝기반 범죄발생 위험지역 예측 vol.21, pp.4, 2013, https://doi.org/10.11108/kagis.2018.21.4.064
  7. Prediction of Obstetric Patient Flow and Horizontal Allocation of Medical Resources Based on Time Series Analysis vol.9, pp.None, 2013, https://doi.org/10.3389/fpubh.2021.646157