DOI QR코드

DOI QR Code

Orhtophoto Accuracy Assessment of Ultra-light Fixed Wing UAV Photogrammetry Techniques

초경량 고정익무인항공기 사진측량기법의 정사영상 정확도 평가

  • 이인수 (대한지적공사 공간정보연구원) ;
  • 이재원 (동아대학교 공과대학 토목공학과) ;
  • 김수정 (대한지적공사 공간정보연구원) ;
  • 홍순헌 (부산대학교 공과대학 사회환경시스템공학부)
  • Received : 2013.04.20
  • Accepted : 2013.08.13
  • Published : 2013.11.30

Abstract

The main purpose of this study is to carry out the performance evaluation of Ultra-light Fixed Wing UAV(Unmanned Aerial Vehicle) photogrammetry which is being, currently, applied for various fields such as cultural assets, accident survey, military reconnaissance work, and disaster management at home and abroad. Firstly, RMSE estimation of Aerial Triangulation (AT) are within approximately 0.10 cm in position (X, Y). And through the comparison of parcel's boundary points coordinates by terrestrial surveying and by UAV photogrammetry, the analysis shows that RMSE are shifted approximately 0.174~0.205 m in X-direction, 0.294~0.298 m in Y-direction respectively. Lastly, parcel's area by orthophoto of UAV photogrammetry and by that of cadastre register has been shown the difference by 0.118 m2. The results presented in this study is just one case study of orthophoto accuracy assessment of Ultra-light fixed wing UAV photogrammetry, hereafter various researches such as AT, direct-georeferencing, flight planning, practical applications, etc. should be necessary continuously.

본 연구는 최근 국내외에서 문화재 보존, 사고현황조사, 군 정찰업무, 재난관리 등 다양한 분야에서 활용되고 있는 초경량 고정익무인항공기 사진측량의 성능평가를 다루고자 한다. 항공삼각측량 결과, 위치(X, Y)에서 RMSE 값은 약 10 cm로 나타났으며, UAV 사진측량의 정사영상에 대한 시각판독법(on-screen digitizing) 기법과 지상측량에 의한 필계점 좌표 차의 RMSE 는 X 방향 약 0.174~0.205 m, Y방향 약 0.294~0.298 m의 편위형 오차가 도출되었다. 그리고 실험대상지역의 임의의 1 필지를 대상으로 지적 공부대장면적과 UAV 사진측량의 정사영상으로 취득한 필지 면적을 비교한 결과 차이는 0.118 $m^2$이다. 본 연구는 초경량 고정익무인항공기 사진측량의 정사영상 정확도 평가에 대한 하나의 연구 사례를 제시하였으며, 향후 항공삼각측량(AT), 직접 기하보정(direct-georeferencing), 비행계획, 그리고 실용적 응용분야 개발 등에 대한 연구가 지속되어야 할 것으로 판단된다.

Keywords

References

  1. Cunningham, K., Walker, G., Stahlke, E. and Wilson, R. (2012). "Cadastral audit and assessments using unmanned aerial systems." International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences-Unmanned Aerial Vehicles in Geomatics, Zurich, Switzerland, Vol. XXXVIII-1/C22 UAV-g 2011.
  2. Eisenbeiss, H. (2010). UAV-borne laser scanning, Available at: http://dgk.auf.uni-rostock.de/uploads/media/11_Eisenbeiss_ DFGRundgespraech.pdf (Accessed: April 11, 2013).
  3. Grun, A., Zhang, Z. and Eisenbeiss, H. (2012). "UAV photogrammetry in remote areas -3D modeling of drapham dzong bhutan." International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Melbourne, Australia, Vol. XXXIX-B1, XXII ISPRS Congress.
  4. IPW. (2009). Institute of plant sciences at ETH Zurich (IPW) corporate website, Available at: http://www.ipw.ethz.ch/(Accessed May 25, 2009).
  5. Jeong, S. T., Ko, J. H., Kim, J. K., Yeom, J. M. and Kim, H. Y. (2012). "Crop information delivery system using an unmanned aerial vehicle." 2012 Conference of The Korean Association of Geographic Information Studies, The Korean Association of Geographic Information Studies, Jeju, Republic of Korea, pp. 296-297 (in Korean).
  6. Jung, S. H., Lim, H. M. and Lee, J. K. (2010). "Acquisition of 3D spatial information using UAV phtogrammetric method." Korean Journal of Geomatics, Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, Vol. 28, No. 1, pp. 161-168 (in Korean).
  7. Khairul Nizam Tahar., Anuar Ahmad.,Wan Abdul Aziz Wan Mohd Akib. and Wani Sofia Udin. (2011). "Unmanned aerial vehicle technology for large scale mapping." ISG & ISPRS 2011, Malaysia, Sept. 27-29, 2011.
  8. Khzirul Nizam Tahar, Anuar Ahmad. and Wan Abdul Aziz Wan Mohd Akib. (2012). "The potential of multi-rotor UAV technology in landslide mapping." J. Mod. Phys. Appl.1 (2012), No. 1, pp. 23-37.
  9. Kim, M. G., Jung, G. Y., Kim, J. B. and Yun, H. C. (2010). "Applicability analysis of UAV for storm and flood mapping." Korean Journal of Geomatics, Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, Vol. 28, No. 6, pp. 655-662 (in Korean).
  10. Kishore, C. S. and Zaman, Q. U. (2012). Rice crop monitoring with unmanned helicopter remote sensing images, remote sensing of biomass - Principles and applications, Available at: http://www. intechopen.com/books/remote-sensing-of-biomassprinciples-and -applications/rice-crop-monitoring-with-unmanned-helicopter-re mote-sensing-images.
  11. Lambers, K., Eisenbeiss, H., Sauerbier, M., Kupferschmidt, D., Gaisecker, T., Sotoodeh, S. and Hanusch, T. (2007). "Combining photogrammetry and laser scanning for the recording and modelling of the late intermediate period site of pinchango alto, palpa, peru." Journal of Archaeological Science Amsterdam, Vol. 34, No. 10, pp. 1702-1712. https://doi.org/10.1016/j.jas.2006.12.008
  12. Lee, I. S., Kim, S. J. and Seo, G. S. (2012). Development and application of imaged-based cadastral mapping(2012), Report 2012-04, Spatial Research Institute, Korea Cadastral Survey Corp (in Korean).
  13. Lee, I. S., Kim, S. J., An, J. C. and Jang, C. H. (2011). Development and application of imaged-based cadastral mapping (2011), Report 2011-05, Spatial Research Institute, Korea Cadastral Survey Corp (in Korean).
  14. Nagai, M., Chen, T., Ahmed, A. and Shibasaki, R. (2008). "UAV borne mapping by multi sensor integration." International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Beijing 2008, Vol. XXXVII. Part B1.
  15. NDMI. (2007). Development of damage estimation module using geospatial imagery information, Report No. NIDP-PR-2006- 01-22 (Research report), National Disaster Management Institute (NDMI), National Emergency Management Agency (in Korean).
  16. Peterman, V. and Mesaric, M. (2012). "Land surveying from unmanned aerial vehicle." International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Melbourne, Australia, Vol. XXXIX-B1, XXII ISPRS Congress.
  17. Pueschel, H., Sauerbier, M. and Eisenbeiss, H. (2008). "A 3D model of Castle Landenberg (CH) from combined photogrammetric processing of terrestrial and UAV-based images." The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, ISPRS Congress, Beijing, China, Vol. XXXVII Part B8, pp. 93-98.
  18. Randa. (2009). Randa rockslide corporate websited (Accessed May 18, 2009).

Cited by

  1. Reservoir Disaster Monitoring using Unmanned Aerial Photogrammetry vol.22, pp.4, 2014, https://doi.org/10.7319/kogsis.2014.22.4.143
  2. A Study on Application of the UAV in Korea for Integrated Operation with Spatial Information vol.22, pp.2, 2014, https://doi.org/10.7319/kogsis.2014.22.2.003
  3. Quality Evaluation of Orthoimage and DSM Based on Fixed-Wing UAV Corresponding to Overlap and GCPs vol.24, pp.3, 2016, https://doi.org/10.7319/kogsis.2016.24.3.003
  4. Reviews of unmanned aerial vehicle (drone) technology trends and its applications in the mining industry vol.19, pp.4, 2016, https://doi.org/10.1080/12269328.2016.1162115
  5. Management of Construction Fields Information Using Low Altitude Close-range Aerial Images vol.32, pp.5, 2014, https://doi.org/10.7848/ksgpc.2014.32.5.551
  6. Preliminary considerations about costs and potential market of remote sensing from UAV in the Italian viticulture context vol.50, pp.1, 2017, https://doi.org/10.1080/22797254.2017.1328269
  7. Assessing the Positioning Accuracy of High density Point Clouds produced from Rotary Wing Quadrocopter Unmanned Aerial System based Imagery vol.23, pp.2, 2015, https://doi.org/10.7319/kogsis.2015.23.2.039
  8. Comparison of Topographic Surveying Results using a Fixed-wing and a Popular Rotary-wing Unmanned Aerial Vehicle (Drone) vol.26, pp.1, 2016, https://doi.org/10.7474/TUS.2016.26.1.024
  9. Topographic Survey at Small-scale Open-pit Mines using a Popular Rotary-wing Unmanned Aerial Vehicle (Drone) vol.25, pp.5, 2015, https://doi.org/10.7474/TUS.2015.25.5.462