DOI QR코드

DOI QR Code

An Algorithm for Submarine Passive Sonar Simulator

잠수함 수동소나 시뮬레이터 알고리즘

  • 정영철 (서울대학교 조선해양공학과) ;
  • 김병욱 (서울대학교 조선해양공학과) ;
  • 안상겸 (서울대학교 조선해양공학과) ;
  • 성우제 (서울대학교 조선해양공학과) ;
  • 이근화 (서울대학교 해양시스템공학연구소) ;
  • 한주영 (국방과학연구소 제 6기술연구본부)
  • Received : 2012.12.28
  • Accepted : 2013.09.04
  • Published : 2013.11.30

Abstract

Actual maritime exercise for improving the capability of submarine sonar operator leads to a lot of cost and constraints. Sonar simulator maximizes the capability of sonar operator and training effect by solving these problems and simulating a realistic battlefield environment. In this study, a passive sonar simulator algorithm is suggested, where the simulator is divided into three modules: maneuvering module, noise source module, and sound propagation module. Maneuvering module is implemented in three-dimensional coordinate system and time interval is set as the rate of vessel changing course. Noise source module consists of target noise, ocean ambient noise, and self noise. Target noise is divided into modulated/unmodulated and narrowband/broadband signals as their frequency characteristics, and they are applied to ship radiated noise level depending on the vessel tonnage and velocity. Ocean ambient noise is simulated depending on the wind noise considering the waveguide effect and other ambient noise. Self noise is also simulated for flow noise and insertion loss of sonar-dome. The sound propagation module is based on ray propagation, where summation of amplitude, phase, and time delay for each eigen-ray is multiplied by target noise in the frequency domain. Finally, simulated results based on various scenarios are in good agreement with generated noise in the real ocean.

잠수함 소나 운용 요원의 능력을 향상시키기 위한 실제 해상 훈련은 많은 비용과 제약사항이 따른다. 소나 시뮬레이터는 이러한 문제점을 해결하고, 실제와 유사한 전장 환경을 모의함으로써 소나 운용 요원의 능력과 훈련 성과를 극대화시킨다. 본 연구에서는 수동 소나 시뮬레이터의 알고리즘을 제시하였으며, 알고리즘은 기동모듈, 소음원모듈, 소음 전달 모듈의 3가지 모듈로 나뉘었다. 기동모듈은 3차원 좌표계를 이용하여 함정의 기동을 구현하였으며, 시간 간격은 함정의 변침률에 따라 설정하였다. 소음원 모듈은 표적 소음, 해양 배경 소음, 자체소음으로 구성하였다. 표적 소음은 주파수 특성에 따라 비변조 협대역, 변조 협대역, 비변조 광대역, 변조 광대역 신호로 구분하였으며, 톤수와 속력에 의존하는 함정 방사소음 준위를 적용하였다. 해양 배경 소음은 음향도파관 효과가 고려된 바람 소음과 그외 배경 소음으로 모의하였으며, 자체소음은 유체소음과 소나돔 삽입 손실로 모의하였다. 소음 전달 모듈은 음선 기반의 모델을 이용하였으며, 기동 모듈의 각 시간에서 고유음선의 진폭, 위상, 시간지연을 합산하여 주파수 영역에서 표적 소음에 곱하였다. 최종적으로 시나리오에 따른 모의 결과 실제 해양에서 발생하는 소음과 유사한 경향을 확인할 수 있었다.

Keywords

References

  1. W. J. Seong, "A study on technical concept of sonar system equipped next-generation submarine" (in Korean), R.O.K Naval combat development group report (2008).
  2. D. McCammon, "Active sonar modeling with emphasis on sonar simulators," DRDC Atlantic report, CR 2004-130 (2004).
  3. J. A. Theriault and D. D. Dellis, "Shallow-water low frequency active sonar modelling issues," Proceedings of the MTS/IEEE Oceans '97 Conference, 672-678 (1997).
  4. P. C. Etter, "Recent advances in underwater acoustic modelling and simulation," J. Sound Vib. 240, 351-383 (2001). https://doi.org/10.1006/jsvi.2000.3212
  5. S. K. An, Development of a passive sonar simulator based on ray model, (Master's thesis, Seoul National University, 2011).
  6. B. U. Kim, Noise simulation and interference pattern analysis for submarine passive sonar, (Master's thesis, Seoul National University, 2013).
  7. R. J. Urick, Principles of underwater sound (McGraw-Hill, New York, 1975), pp. 17-30.
  8. M. Deaett, "Signature modeling for acoustic trainer synthesis," IEEE J. Ocean. Eng. 12, 143-147 (1987). https://doi.org/10.1109/JOE.1987.1145249
  9. D. Ross, Mechanics of underwater noise (Pergamon, New York, 1976), pp. 272-287.
  10. K. H. Lee, Y. C. Chu, S. I. Kim, W. J. Seong, "A broad-band ray model using gaussian interpolation" (in Korean), J. Acoust. Soc. Kr. Suppl. 1(s) 29, 110-112 (2010).
  11. G. M. Wenz, "Acoustic ambient noise in the ocean: spectra and sources," J. Acoust. Soc. Am. 34, 1936-1956 (1962). https://doi.org/10.1121/1.1909155
  12. B. K Choi, B. C. Kim, C. S. Kim and B. N. Kim, "Analysis of dependence on wind speed and ship traffic of underwater ambient noise at shallow sea surrounding the Korean peninsula" (in Korean), J. Acoust. Soc. Kr. 22, 233-241 (2003).
  13. W. M. Carey and R. B. Evans, Ocean ambient noise, Measurement and Theory (Springer, New York, 2011), pp. 99-127.
  14. R. W. Bannister, "Deep sound channel noise from high-latitude winds," J. Acoust. Soc. Am. 79, 41-48 (1986). https://doi.org/10.1121/1.393604
  15. J. H. Wilson, "Very low frequency(VLF) wind-generated noise produced by turbulent pressure fluctuations in the atmosphere near the ocean surface," J. Acoust. Soc. Am. 66, 1499-1507 (1979). https://doi.org/10.1121/1.383545
  16. E. J. Skudrzyk and G. P. Haddle. "Noise production in a turbulent boundary layer by smooth and rough surfaces," J. Acoust. Soc. Am. 32, 19-34 (1960). https://doi.org/10.1121/1.1907871
  17. R. P. Hodges, Underwater Acoustics: Analysis, Design and Performance of Sonar (John Wiley and Sons, Chichester, U.K., 2010), pp.193-199.
  18. G. M. Corcos, "Resolution of pressure in turbulence," J. Acoust. Soc. Am. 35, 192-199 (1963). https://doi.org/10.1121/1.1918431
  19. V. Bhujanga Rao, "Flow-induced noise of a sonar dome," Applied Acoustics 18, 21-33 (1985). https://doi.org/10.1016/0003-682X(85)90003-9
  20. L. M. Brekhovskikh, Waves in layered media (Academic Press, New York, 1980), pp. 1-129.
  21. J. H. Lee, B. N. Kim and K. K. Shin, "Insertion loss of sound waves through composite acoustic window materials," Current Applied Physics 10, 138-144 (2010). https://doi.org/10.1016/j.cap.2009.05.017
  22. M. F. McKenna, D. Ross, S. M. Wiggins and A. H. John, "Underwater radiated noise from modern commercial ships," J. Acoust. Soc. Am. 131, 92-103 (2012). https://doi.org/10.1121/1.3664100

Cited by

  1. Study on Hidden Period Estimation in Propeller Noise by Applying Compressed Sensing to Auto-Correlation and Filter-Bank Structure vol.40, pp.12, 2015, https://doi.org/10.7840/kics.2015.40.12.2476
  2. Hidden Period Estimation in the Broad Band Propeller Noise Using Auto-Correlation and Filter-Bank Structure vol.39B, pp.8, 2014, https://doi.org/10.7840/kics.2014.39B.8.538