DOI QR코드

DOI QR Code

Horizontal Bearing Behavior of Group Suction Piles by Numerical Analysis

수치해석을 이용한 그룹형 석션파일의 수평방향 지지거동 분석

  • Lee, Ju-Hyung (Geotechnical Engrg. Research Division, Korea Institute of Construction Technology) ;
  • Lee, Si-Hoon (Dept. of Civil Engrg., Dong-A Univ.) ;
  • Kim, Sung-Ryul (Dept. of Civil Engrg., Dong-A Univ.)
  • 이주형 (한국건설기술연구원 Geo-인프라연구실) ;
  • 이시훈 (동아대학교 토목공학과) ;
  • 김성렬 (동아대학교 토목공학과)
  • Received : 2013.10.18
  • Accepted : 2013.11.19
  • Published : 2013.11.30

Abstract

Recently, several researches on the development of new economical foundation types have been performed to support floating structures as many offshore structures have been constructed. This study focused on the evaluation of bearing capacity of group suction piles, which are connected by a concrete pile cap. The offshore floating structures are mainly subjected to horizontal loading, so the horizontal bearing capacities of the group suction piles were analyzed by performing 3-dimensional finite element analyses. The group suction piles are expected to behave as a rigid pile due to its shallow embedded depth. Therefore, the detailed soil modeling was necessary to simulate the bearing behavior of soils under low confining pressure. The modulus and the strength of soils were modelled to increase with effective confining pressure in soils. For the parametric study, the center-to-center spacing between piles was varied and two soil types of clay and sands were applied. The analyses results showed that the yielding load of the group pile increased with the increase of the pile spacing and the yielding load of the group piles with 5D spacing was about 3 times larger than that of the single pile with free rotation.

최근 해양구조물의 건설이 활발해짐에 따라 해상 부유식 구조체를 경제적으로 지지할 수 있는 새로운 기초형식을 개발하려는 연구가 이루어지고 있다. 본 연구에서는 기존의 대구경 단일형 석션파일 대신에 다수의 중구경 석션파일을 콘크리트 파일캡으로 결합한 그룹형 석션파일 형식에 대하여 연구하였다. 해상 부유식 구조체에 사용되는 기초의 경우 수평방향 하중이 지배적이므로 그룹형 석션파일의 수평방향 지지거동을 3차원 유한요소 해석을 통해 분석하였다. 그룹형 석션파일은 근입깊이가 얕아서 강체기초 거동을 하게 되므로 수평방향 거동을 분석할 때 지표면 부근의 낮은 구속압을 받는 지반의 정밀한 거동 모사가 필요하다. 이를 위하여, 탄성계수, 지반강도 등을 지반 구속압에 따라 증가되도록 모델링하였다. 해석조건은 석션파일 중심간 거리, 그리고 사질토와 점성토의 지반조건 등을 변화시키며 변수연구를 수행하였다. 그 결과, 석션파일 사이의 간격이 증가함에 따라 점차 항복하중이 증가하였으며, 그룹형 석션파일의 항복하중은 S/D=5인 경우 회전을 허용한 단일형 석션파일 항복하중의 약 3배인 것으로 나타났다.

Keywords

References

  1. Andersen, K. H., Murff, J. D., Randolph, M. F., Clukey, E. C., Erbrich, C. T., Jostad, H. P., Hansen, B., Aubeny, C., Sharma, P., and Supachawarote, C. (2005), Suction anchors for deepwater applications, Keynote Lecture, International Symposium on Frontiers in Offshore Geotechnics, Perth 2005, Proceedings, pp.3-30.
  2. Bransby, M. F. and Randolph, M. F. (1997), Shallow foundation subject to combined loadings, Proc. 9th Int. Conf. Comput. Methods Adv. Geomech., Wuhan 3, pp.1947-1952.
  3. Broms, B. (1964), Design of Laterally Loaded Piles, Proc. ASCE, Vol.91, No.SM3, pp.79-99.
  4. Colliat, J. L., Boisard, P., Andersen, K., and Schroeder, K. (1995), Caisson Foundations as Alternative Anchors for Permanent Mooring of a Process Barge Offshore Congo, Proceedings, Offshore Technology Conference, OTC 7797, pp.919-929.
  5. Houlsby, G. T. and Martin, C. M. (2003), Undrained bearing capacity factors for conical footing on clay, Geotechnique, Vol.53, No.5, pp.513-520. https://doi.org/10.1680/geot.2003.53.5.513
  6. Hung, L. C. and Kim, S. R. (2012), Evaluation of vertical and horizontal bearing capacities of bucket foundations in clay, Ocean Engineering, Vol.52, pp.75-82. https://doi.org/10.1016/j.oceaneng.2012.06.001
  7. Janbu, N. (1963), Soil compressibility as determined by oedometer and triaxial test, Proc. of the European Conf. on Soil Mechanics and Foundation Engineering, Weisbaden 1, pp.19-25.
  8. KICT (2008), Development of construction technology for concrete floated offshore infrastructures, Planning report, KICT 2008-043, pp.3-8.
  9. KICT (2011), Development of novel technologies for low-cost and high-efficiency suction piles(II), KICT 2011-091, pp.53-56.
  10. Kim, S. R., Jeong, J. U., Oh, M. H., and Kwon, O. S. (2012), Analysis of the bearing behavior of a tripod bucket installed in clay, Journal of The Korean Society of Civil Engineers, Vol.32, No.3C, pp.105-111.
  11. Mosallanezhad, M., Hataf, N., and Ghahramani, A. (2008), Experimental study of bearing capacity of granular soils, reinforced with innovative grid-anchor system, Geotechnical and Geological Engineering, Vol.26, pp.299-312. https://doi.org/10.1007/s10706-007-9166-z
  12. Randolph, M. F., Cassidy, M. J., Gourvenec, S. M., and Erbrich, C. (2005), Challenges of offshore geotechnical engineering, Proc. 16th Int. Conf. Soil Mech. Geotech. Engng, Osaka, 1, pp.123-176.
  13. Simulia (2010), Abaqus user's Manual, Dassault Systemes Simulia Corp., Providence, RI.
  14. Taiebat H. A. and Carter J. P. (2000), Numerical studies of the bearing capacity of shallow foundations on cohesive soil subjected to combined loading, Geotechnique, Vol.50, No.4, pp.409-418. https://doi.org/10.1680/geot.2000.50.4.409
  15. Yun, G. and Bransby, M. F. (2007), The undrained vertical bearing capacity of skirted foundations in undrained soil, Soils and Foundations, Vol.47, No.3, pp.493-506. https://doi.org/10.3208/sandf.47.493

Cited by

  1. 해상풍력 석션버켓 기초 구조-지반 상호작용 비선형 구조해석 및 실험결과 비교 vol.2, pp.3, 2013, https://doi.org/10.18770/kepco.2016.02.03.469
  2. 강관말뚝의 제원이 말뚝거동에 미치는 영향에 관한 수치해석 연구 vol.33, pp.5, 2017, https://doi.org/10.7843/kgs.2017.33.5.37