DOI QR코드

DOI QR Code

Effects of Die Temperature and CO2 Gas Injection on Physical Properties of Extruded Brown Rice-Vegetable Mix

사출구 온도와 CO2 가스주입이 현미·야채류 압출성형물의 물리적 특성에 미치는 영향

  • Gil, Sun-Kook (Dept. of Food Science and Technology, Kongju National University) ;
  • Ryu, Gi-Hyung (Dept. of Food Science and Technology, Kongju National University)
  • Received : 2013.07.11
  • Accepted : 2013.10.14
  • Published : 2013.11.30

Abstract

This study is designed to examine the change in physical properties of extruded brown rice-vegetable mix at different temperatures and $CO_2$ gas injections. Moisture content and screw speed were fixed to 27% and 100 rpm respectively. Die temperatures and $CO_2$ gas injections were adjusted to 60, 80, $100^{\circ}C$ and 0, 150 mL/min, respectively. The ratio of ${\alpha}$-brown rice, brown rice and sugars (oligosaccharides and palatinose) was fixed to 25, 50 and 16%, respectively. Green tea, tomato and pumpkin powder were blended individually at 9%. Specific mechanical energy (SME) input decreased as die temperature for each vegetable addition increased. All extrudates decreased in density and breaking strength, but increased in specific length and water soluble index as $CO_2$ gas injection increased. Elastic modulus decreased as the die temperature and $CO_2$ gas injection increased. Extruded green tea mix with $CO_2$ gas injection at 150 mL/min was larger pore size and higher amount of pore than the tomato and pumpkin extrudates with $CO_2$ gas injection. Cold extrusion with $CO_2$ gas injection at $60^{\circ}C$ die temperature could be applicable for making Saengsik (uncooked food).

녹차, 토마토, 호박가루 첨가와 사출구 온도, $CO_2$ 가스 주입에 따라 압출성형물의 물리적 특성에 미치는 영향을 분석하기 위해 비기계적에너지, 팽화특성, 기계적 특성, 색도, 수분용해지수와 수분흡착지수, 미세구조를 분석하였다. 수분함량 27%, 스크루 회전속도 100 rpm, 원료 사입량 100 g/min, 사출구 3 mm 원형으로 고정하였고, 사출구 온도(60, 80, $100^{\circ}C$), $CO_2$ 가스 주입량(0, 150 mL/min)으로 조절하였다. 원료는 알파현미 25%, 현미가루 50%와 당류 16%에 녹차, 토마토, 호박을 각각 9%씩 혼합하여 사용하였다. 비기계적 에너지 투입량은 사출구 온도 $100^{\circ}C$, $CO_2$ 가스 주입량 150 mL/min, 호박가루를 첨가했을 때 52.67 kJ/kg으로 가장 낮은 비기계적 에너지 투입량을 나타내었다. $CO_2$ 가스를 주입하지 않은 경우 사출구 온도는 직경팽화율에 큰 영향을 주지 않았으나 직경팽화율은 $60^{\circ}C$에서 $CO_2$ 가스를 주입함에 따라 증가하였다. $CO_2$ 가스 주입량이 증가할수록 비길이는 증가하는 경향을 나타냈으며, 녹차 첨가 시 사출구 온도와 $CO_2$ 가스 주입량이 증가할수록 밀도는 감소하는 경향을 나타내었다. 특히 사출구 온도 $60^{\circ}C$에서 $CO_2$ 가스 주입 시 $100^{\circ}C$에서 $CO_2$ 가스를 주입하지 않을 때와 비슷한 기공의 크기와 수를 보여주었다. 모든 사출구 온도에서 $CO_2$ 가스 주입시 파괴력은 감소하였다. 수분용해지수는 사출구 온도증가 시 감소하고 $CO_2$ 가스 주입 시에는 증가하는 경향을 나타내었으며, 수분흡착지수는 사출구 온도와 $CO_2$ 가스 주입량이 증가할수록 증가하였다. 사출구 온도 $60^{\circ}C$에서 $CO_2$ 가스 주입을 통한 저온 압출성형은 생식 제조에 적용할 수 있는 가능성을 나타내고 있다.

Keywords

References

  1. Park MH. 2002. The status of uncooked food industry and its future. Food Industry and Nutrition 7(3): 1-3.
  2. Ha TY, Kim NY. 2003. The effects of uncooked grains and vegetables with mainly brown rice on weight control and serum components in Korean overweight/obese female. Korean J Nutr 36: 183-190.
  3. Lee SY. 2002. Manufacture processing of uncooked food on the market. Food Industry and Nutrition 7(3): 11-15.
  4. Jin TY, Oh DH, Rhee CO, Chung DO, Eun JB. 2006. Change of physicochemical characteristics and functional components in the cereal of Saengsik, uncooked food by washing with electrolyzed water. Korean J Sci Technol 38: 506-512.
  5. Lee YJ, Lee HM, Park TS. 2003. Effects of uncooked powdered food on antioxidative system and serum mineral concentrations in rats fed unbalanced diet. Korean J Nutr 36:898-907.
  6. Chang TE, Moon SY, Lee KW, Park JM, Han JS, Song OJ, Shin IS. 2004. Microflora of manufacturing process and final products of Saengshik. Korean J Food Sci Technol 36:501-506.
  7. Kim JD, Lee BI, Jeon YH, Bak JP, Jin HL, Lim BO. 2010. Anti-oxidative and anti-inflammatory effects of green tea mixture and dietary fiber on liver of high fat diet-induced obese rats. Korean J Medicinal Crop Sci 18: 224-230.
  8. Jeon BD, Seo HB, Jeon HR, Kwon TD, Ryu SP. 2011. Effects of exercise training and green tea ingestion after noise exposure on stress hormones in rats. Korea J Physical Education 50: 295-305.
  9. Erba D, Riso P, Bordoni A, Foti P, Biagi PL, Testolin G. 2005. Effectiveness of moderate green tea consumption on antioxidative status and plasma lipid profile in humans. J Nutr Biochem 16: 144-149. https://doi.org/10.1016/j.jnutbio.2004.11.006
  10. Watanabe J, Kawabata J, Niki R. 1998. Isolation and identification of acetyl-CoA carboxylase inhibitors from green tea (Camellia sinensis). Biosci Biotech Biochem 62: 532-534. https://doi.org/10.1271/bbb.62.532
  11. Kim IS, Jin SK, Hur IC, Choi SY, Jung HJ, Lee JK, Kang SH, Woo GM, Kang SN. 2009. Effect of tomato powder on meat patties as nitrite alternatives. Korean J Food Sci Ani Resour 29: 382-390. https://doi.org/10.5851/kosfa.2009.29.3.382
  12. Kim HS, Chin KB. 2011. Physico-chemical properties and antioxidant activity of pork patties containing various tomato powders of solubility. Korean J Food Sci Ani Resour 31: 436-441. https://doi.org/10.5851/kosfa.2011.31.3.436
  13. Choi CB, Park YK, Kang YH, Park MW. 1998. Effects of pumpkin powder on chemically induced stomach and mammary cancers in Sprague-Dawley rats. J Korean Soc Food Sci Nutr 27: 973-979.
  14. Park MJ, Jeon YS, Han JS. 2001. Antioxidative activity of mustard leaf kimchi added green tea and pumpkin powder. J Korean Soc Food Sci Nutr 30: 1053-1059.
  15. Gu BJ, Ryu GH. 2011. Effects of die geometry on expansion of corn flour extrudate. Food Eng Prog 15: 148-154.
  16. Happer JM. 1989. Food extruders and their application. In Extrusion Cooking. Mercier C, Linko P, Harper JM, eds. AACC, Inc., St. Paul, MN, USA. p 91-155.
  17. Ryu GH, Mulvaney SJ. 1997. Analysis of physical properties and mechanical energy input of cornmeal extrudates fortified with dairy products by carbon dioxide injection. Korean J Food Sci Technol 29: 947-954.
  18. Ryu GH. 1995. Extrusion process with gas injection. Food Science and Industry 28: 30-38.
  19. Tie J, Lee ES, Hong ST, Ryu GH. 2007. Manufacturing of Goami flakes by using extrusion process. Korean J Food Sci Technol 39: 146-151.
  20. Phawatwiangnak K, Samakradhamrongthai R, Narruenartwongsakul S, Utama-ang N. 2013. Effects of moisture content on extruded dough of green tea breakfast cereal. Food and Applied Bioscience J 1: 11-23.
  21. Altan A, McCarthy KL, Maskan M. 2008. Evaluation of snack foods from barley-tomato pomace blends by extrusion processing. J Food Eng 84: 231-242. https://doi.org/10.1016/j.jfoodeng.2007.05.014
  22. Alvarez-Martinez L, Kondury KP, Happer JM. 1988. A general model for expansion of extruded products. J Food Sci 53: 609-615. https://doi.org/10.1111/j.1365-2621.1988.tb07768.x
  23. Tie J, Gu BJ, Ryu GH. 2010. Manufacturing of hemp seed flake by using extrusion process. Food Eng Prog 14: 99-105.
  24. Ryu GH, Ng PKW. 2001. Effects of selected process parameters on expansion and mechanical properties of wheat flour and whole cornmeal extrudates. Starch 53: 147-154. https://doi.org/10.1002/1521-379X(200104)53:3/4<147::AID-STAR147>3.0.CO;2-V
  25. AACC. 1983. Approved method of the AACC. 10th ed. American Association of Cereal Chemists, St. Paul, MN, USA. Method 56-20.
  26. Senouci A, Smith AC. 1986. The extrusion cooking of potato starch material. Starch 38: 78-82. https://doi.org/10.1002/star.19860380304
  27. Tayeb J, Valle GD, Barres C, Vergnes B. 1992. Simulation of transport phenomena in twin-screw extruders. In Food Exrusion Science and Technology. Kokini JL, Ho CT, Karwe MV, eds. Marcel Dekker, Inc., New York, NY, USA. p 41-70.
  28. Gu BJ, Norajit K, Ryu GH. 2010. Physicochemical properties of extruded defatted hemp seed and its energy bar manufacturing. Food Eng Prog 14: 127-134.
  29. Chinnaswamy R, Hanna MA. 1990. Macromolecular and functional properties of native and extrusion-cooked corn starch. Cereal Chem 67: 490-499.
  30. Han JY, Kim MH, Jin T, Kim SJ, Kim MH, Ryu GH. 2007. Change in characteristics of extruded vitamin C cornstarch matrix by moisture content and barrel temperature. Food Eng Prog 11: 253-260.
  31. Jeong HS, Min YK, Toledo RT. 2002. Effects of low temperature extrusion method on the physical properties and cell structure of pregelatinized rice flour extrudate. Food Eng Prog 6: 145-151.

Cited by

  1. Change in Physical Properties of Cold-Extruded Brown Rice and Vegetable Mix at Various Pregelatinized Brown Rice Content and CO2Gas Injection vol.43, pp.11, 2014, https://doi.org/10.3746/jkfn.2014.43.11.1716
  2. Influences of Die Temperature and Repeated Extrusion on Physical Properties of Extruded White Ginseng vol.44, pp.6, 2015, https://doi.org/10.3746/jkfn.2015.44.6.921
  3. Effects of Screw Speed, Moisture Content, and Die Temperature on Texturization of Extruded Soy Protein Isolate vol.45, pp.8, 2016, https://doi.org/10.3746/jkfn.2016.45.8.1170
  4. Effects of Die Temperature and CO2Injection on Physical Properties and Antioxidant Activity of Extruded Rice with Tomato Flour vol.44, pp.6, 2015, https://doi.org/10.3746/jkfn.2015.44.6.912
  5. Effects of Extrusion Process Variables on the Physicochemical Characteristics of Extruded Biji vol.22, pp.1, 2018, https://doi.org/10.13050/foodengprog.2018.22.1.50