DOI QR코드

DOI QR Code

Numerical analysis of turbulent flows in the helically coiled pipes of heat transfer

열교환기의 나선형 관내 난류유동 수치해석

  • Received : 2013.08.20
  • Accepted : 2013.10.02
  • Published : 2013.11.30

Abstract

The flow analysis has been made by applying the turbulent models in the helically coiled tubes of heat transfer. The k-${\varepsilon}$ and Spalart-Allmaras turbulent models are used in which the structured grid is applied for the simulation. The velocity vector, the pressure contour, the change of residuals along the iteration number and the friction factors are simulated by solving the Navier-Stokes equations to make clear the Reynolds number effect. The helical tube increases the centrifugal forces by which the wall shear stress become larger on the outer side of the tube. The centrifugal force makes the heat transfer rate locally larger due to the increase of the flow energy, which finds out the close relationship between the pressure drop and friction factor in the internal flow. The present numerical results are compared with others, for example, in the value of friction factor for validation.

열교환기의 나선형 튜브에 난류모형을 적용하여 유동해석을 수행하였다. 난류모형은 Spalart-Allmaras과 k-${\varepsilon}$이고 시뮬레이션에는 정렬격자를 적용하였다. 레이놀즈 수 영향을 규명하기 위하여 Navier-Stokes 방정식을 풀어 속도벡터, 압력, 잔차, 마찰계수를 재연하였다. 나선형튜브는 원심력을 증가하여 튜브의 바깥부분에 벽전단 응력을 크게 하였다. 열전도율과 마찰저항의 증가는 곡률에 기인하며 튜브의 내부방향으로는 벽 전단응력이 감소했다. 원심력은 유체의 에너지를 증가시켜서 바깥쪽으로 열전도율을 증가시켰고 이는 내부유동의 압력강하 및 관마찰계수가 상호 밀접한 관계가 있음을 규명하여 주었다. 본 수치결과는 검증을 위하여 타 계산에서 얻어진 마찰계수 결과와 비교하였다.

Keywords

References

  1. R. A. Seban and E. F. McLaughlin, "Heat transfer in tube coils with laminar and turbulent flow", International Journal Heat Mass Transfer 6, vol. 6, no. 5, pp. 387-395, 1963. https://doi.org/10.1016/0017-9310(63)90100-5
  2. C. M. White, "Fluid friction and its relation to heat transfer," Transaction Institute Chemical Engineering(London), vol. 10, pp. 66-86, 1932.
  3. P. Mishra and S. N. Gupta, "Momentum transfer in curved pipes, 1. newtonian fluids," Industrial Engineering Chemical Process Des. Dev., vol. 1, pp. 130-137, 1979.
  4. S. Ali, "Pressure drop correlations for flow through regular helical coil tubes," The Japan Society of Fluid Mechanics and Elsevier Science, vol. 28, no. 4, pp. 295- 310, 2001.
  5. H. Ito, "Friction factors for turbulent flow in curved pipes," Transaction Am. Society Mechanical Engineering. Journal Basic Engineering D81, pp. 123-134, 1959.
  6. B. J. Boersma and F. T. M. Nieuwstadt, "Large-eddy simulation of turbulent flow in a curved pipe," Journal Fluids Energy, vol. 118, pp. 248-254, 1996. https://doi.org/10.1115/1.2817370
  7. C. Moulinec, M. J. B. M. Pourquie, B. J. Boersma, T. Buchal, and F. T. M. Nieuwstadt, "Direct numerical simulation on a cartesian mesh of the flow through a tube bundle," International Journal of Computational Fluid Dynamics, vol. 18, no. 1, pp. 1-14, 2004. https://doi.org/10.1080/1061856031000140211
  8. J. H. Bae, J. Y. Yoo, and H. Choi, "Direct numerical simulation of turbulent heat transfer to fluids at supercritical pressure flowing in vertical tubes," Transactions of the Korean Society of Mechanical Engineers B, vol. 28, no. 11, pp. 1302-1314, 2004 (in Korean). https://doi.org/10.3795/KSME-B.2004.28.11.1302
  9. R. C. Xin, A. Awwad, Z. F. Dong, and M. A. Ebadian, "An experimental study of single-phase and two-phase flow pressure drop in annular helicoidal pipes," International Journal Heat Fluid Flow, vol. 18, pp. 482-488, 1997. https://doi.org/10.1016/S0142-727X(97)80006-9
  10. B. E. Launder and D. B. Spalding, Lecture in Math Models of Turbulence, Academic Press, London, England, 1972.
  11. P. R. Spalart and M. Shur, "On the sensitization of turbulence models to rotation and curvature," Aerospace Science Technology, vol. 1, no. 5, pp. 297-302, 1997. https://doi.org/10.1016/S1270-9638(97)90051-1

Cited by

  1. Performance evaluation of sea water heat exchanger installed in the submerged bottom-structure of floating architecture vol.39, pp.10, 2015, https://doi.org/10.5916/jkosme.2015.39.10.1062
  2. 헬리컬 코일 내 층류유동에서의 마찰 및 열전달 특성에 대한 수치해석 연구 vol.27, pp.3, 2013, https://doi.org/10.7735/ksmte.2018.27.3.293