DOI QR코드

DOI QR Code

Electrochemical Characteristics of Lithium Ion Battery Anode Materials of Graphite/SiO2

리튬이차전지 음극재로서 Graphite/SiO2 합성물의 전기화학적 특성

  • Received : 2014.08.14
  • Accepted : 2014.09.16
  • Published : 2014.12.10

Abstract

The graphite/$SiO_2$ composites as anode materials for lithium-ion batteries were prepared by sol-gel method to improve the graphite's electrochemical characteristics. The prepared graphite/$SiO_2$ composites were analysed by XRD, FE-SEM and EDX. The graphite surface modified by silicon dioxide showed several advantages to stabilize SEI layer. The electrochemical characteristics were investigated for lithium ion battery using graphite/$SiO_2$ as the working electrode and Li metal as the counter electrode. Electrochemical behaviors using organic electrolytes ($LiPF_6$, EC/DMC) were characterized by charge/discharge, cycle, cyclic voltammetry and impedance tests. The lithium ion battery using graphite/$SiO_2$ electrodes had better capacity than that of using graphite electrodes and was able to deliver a discharge capacity with 475 mAh/g at a rate of 0.1 C. Also, the capacity retention ratio of the modified graphite reaches 99% at a rate of 0.8 C.

본 연구에서는 리튬이차전지의 음극활물질로 graphite의 전기화학적 특성을 향상시키기 위하여 졸-겔 법에 의한 graphite/$SiO_2$ 복합소재를 제조하였다. 제조된 graphite/$SiO_2$ 합성물은 XRD, FE-SEM과 EDX를 사용하여 분석하였다. $SiO_2$에 의해 표면 개질된 graphite는 SEI 층을 안정화시키는데 장점을 보여 주었다. Graphite/$SiO_2$ 전극을 작업 전극으로, 리튬메탈을 상대전극으로 하여 리튬이차전지의 전기화학 특성을 조사하였다. $LiPF_6$ 염과 EC/DMC 용매를 전해질로 사용하여 제조한 코인 셀의 전기화학적 거동은 충방전, 사이클, 순환전압전류, 임피던스 테스트를 진행하여 평가하였다. Graphite/$SiO_2$ 전극을 사용한 리튬이차전지는 graphite 전극을 사용한 전지보다 우수한 특성을 보여주었으며, 0.1 C rate에서 465 mAh/g의 용량을 보여주었다. 또한 개질된 graphite 전극은 0.8 C rate에서 99%의 용량 보존율을 보여주었다.

Keywords

References

  1. C. H. Doh, B. S. Jin, J. H. Lim, and S. I. Moon, Electrochemical Characteristics of Lithium Transition-Metal Oxide as an Anode Material in a Lithium Secondary Battery, Korean J. Chem. Eng., 19, 749-755 (2002). https://doi.org/10.1007/BF02706963
  2. B. Xu, D. Qian, Z. Wang, and Y. S. Meng, Recent progress in advanced materials for lithium ion batteries, Mater. Sci. Eng., 73, 51-65 (2012). https://doi.org/10.1016/j.mser.2012.05.003
  3. W. J. Zhang, A review of the electrochemical performance of alloy anodes for lithium-ion batteries, J. Power Sources, 196, 13-24 (2011). https://doi.org/10.1016/j.jpowsour.2010.07.020
  4. B. Fuchsbichler, C. Stangl, H. Krenc, F. Uhlig, and S. Koller, High capacity graphite-silicon composite anode material for lithium- ion batteries, J. Power Sources, 196, 2889-2892 (2011). https://doi.org/10.1016/j.jpowsour.2010.10.081
  5. L. J. Fu, K. Endo, K. Sekine, T. Takamura, Y. P. Wua, and H. Q. Wu, Studies on capacity fading mechanism of graphite anode for Li-ion battery, J. Power Sources, 162, 663-666 (2006). https://doi.org/10.1016/j.jpowsour.2006.02.108
  6. B. Li, M. Xu, B. Li, Y. Liu, L. Yanga, W. Li, and S. Hu, Properties of solid electrolyte interphase formed by prop-1-ene-1,3-sultone on graphite anode of Li-ion batteries, Electrochim. Acta, 105, 1-6 (2013). https://doi.org/10.1016/j.electacta.2013.04.142
  7. H. Zhao, J. Ren., X. He, J. Li, C. Jiang, and C. Wan, Purification and carbon-film-coating of natural graphite as anode materials for Li-ion batteries, Electrochim. Acta, 52, 6006-6011 (2007). https://doi.org/10.1016/j.electacta.2007.03.050
  8. K. Guo, Q. Pan, and S. Fang, Poly(acrylonitrile) encapsulated graphite as anode materials for lithium ion batteries, J. Power Sources, 111, 350-356 (2002). https://doi.org/10.1016/S0378-7753(02)00347-6
  9. M. L. Lee, Y. H. Li, S. C. Liao, J. M. Chen, J. W. Yeh, and H. C. Shih, $Li_4Ti_5O_{12}$-coated graphite anode materials for lithium-ion batteries, Electrochim. Acta, 112, 529-534 (2013). https://doi.org/10.1016/j.electacta.2013.08.150
  10. L. Yao, X. Hou, S. Hu, X. Tang, X. Liu, and Q. Ru, An excellent performance anode of $ZnFe_2O_4$/flake graphite composite for lithium ion battery, J. Alloy. Compd, 585, 398-403 (2014). https://doi.org/10.1016/j.jallcom.2013.09.066
  11. H. J. Guo, X. H. Li, J. Xie, Z. X. Wang, W. J. Peng, and Q. M. Sun, Effects of Ni substitution on the properties of $Co_3O_4$/graphite composites as anode of lithium ion batteries, Energ. Convers. Manage., 51, 247-252 (2010). https://doi.org/10.1016/j.enconman.2009.09.013
  12. J. Zhang, H. Cao, X. Tang, W. Fan, G. Peng, and M. Qu, Graphite/graphene oxide composite as high capacity and binder- free anode material for lithium ion batteries, J. Power Sources, 241, 619-626 (2013). https://doi.org/10.1016/j.jpowsour.2013.05.001
  13. L. Z. Bai, D. L. Zhao, T. M. Zhang, W. G. Xie, and J. M. Zhang, A comparative study of electrochemical performance of graphene sheets, expanded graphite and natural graphite as anode materials for lithium-ion batteries, Electrochim. Acta, 107, 555-561 (2013). https://doi.org/10.1016/j.electacta.2013.06.032
  14. M. Su, Z. Wang, H. Guo, X. Li, S. Huang, W. Xiao, and L. Gan, Enhancement of the Cycle ability of a Si/Graphite@Graphene composite as anode for Lithium-ion batteries, Electrochim. Acta, 116, 230-236 (2014). https://doi.org/10.1016/j.electacta.2013.10.195
  15. D. Arumugam and G. Paruthimal Kalaignan, Synthesis and electrochemical characterizations of Nano-$SiO_2$-coated $LiMn_2O_4$ athode materials for rechargeable lithium batteries, J. Electroanal. Chem., 624, 197-204 (2008). https://doi.org/10.1016/j.jelechem.2008.09.007
  16. Q. Sun, B. Zhang, and Z. W. Fu, Lithium electrochemistry of $SiO_2$ thin film electrode for lithium-ion batteries, Appl. Surf. Sci., 254, 3774-3779 (2008). https://doi.org/10.1016/j.apsusc.2007.11.058
  17. Y. Yu, J. L. Shui, Y. Jin, and C. H. Chen, Electrochemical performance of nano-$SiO_2$ modified $LiCoO_2$ thin films fabricated by electrostatic spray deposition (ESD), Electrochim. Acta, 51, 3292-3296 (2006). https://doi.org/10.1016/j.electacta.2005.09.021
  18. Y. Yao, J. Zhang, L. Xue, T. Huang, and A. Yu, Carbon-coated $SiO_2$ nano-particles as anode material for lithium ion batteries, J. Power Sources, 196, 10240-10243 (2011). https://doi.org/10.1016/j.jpowsour.2011.08.009
  19. H. Y. Wang and F. M. Wang, Electrochemical investigation of an artificial solid electrolyte interface for improving the cycle-ability of lithium ion batteries using an atomic layer deposition on a graphite electrode, J. Power Sources, 233, 1-5 (2013). https://doi.org/10.1016/j.jpowsour.2013.01.134
  20. Z. Jian, H. Liu, J. Kuang, Y. He, L. Shi, and H. Xiao, Natural flake graphite modified by mild oxidation and carbon coating treatment as anode material for lithium ion batteries, Procedia Engineering, 27, 55-62 (2012). https://doi.org/10.1016/j.proeng.2011.12.424
  21. Y. Fan, J. Wang, Z. Tang, W. He, and J. Zhang, Effects of the nano-structured $SiO_2$ coating on the performance of $LiNi_{0.5}Mn_{1.5}O_4$ cathode materials for high-voltage Li-ion batteries, Electrochim. Acta, 52, 3870-3875 (2007). https://doi.org/10.1016/j.electacta.2006.10.063
  22. Y. Yao, J. Zhang, L. Xue, T. Huang, and A. Yu, Improving the cycling stability of $LiCoO_2$ at 4.5 V through surface modification by $Fe_2O_3$ coating, J. Power Sources, 196, 10240-10243 (2011). https://doi.org/10.1016/j.jpowsour.2011.08.009
  23. H. Y. Wang and F. M. Wang, Electrochemical investigation of an artificial solid electrolyte interface for improving the cycle-ability of lithium ion batteries using an atomic layer deposition on a graphite electrode, J. Power Sources, 233, 1-5 (2013). https://doi.org/10.1016/j.jpowsour.2013.01.134

Cited by

  1. Synthesis and Electrochemical Characteristics of Mesoporous Silicon/Carbon/CNF Composite Anode vol.26, pp.5, 2015, https://doi.org/10.14478/ace.2015.1056
  2. Electrochemical Performance of Hollow Silicon/Carbon Anode Materials for Lithium Ion Battery vol.27, pp.4, 2016, https://doi.org/10.14478/ace.2016.1055
  3. 구형 나노 실리카를 사용한 다공성 실리콘/탄소 음극소재의 전기화학적 특성 vol.54, pp.4, 2014, https://doi.org/10.9713/kcer.2016.54.4.459
  4. 석유계 피치를 사용한 리튬전지 음극소재의 전기화학적 특성 vol.28, pp.5, 2017, https://doi.org/10.14478/ace.2017.1062
  5. 리튬이온배터리 Graphite/Silicon/Carbon 복합 음극소재의 전기화학적 성능 vol.56, pp.3, 2014, https://doi.org/10.9713/kcer.2018.56.3.320
  6. Effect of petroleum pitch coating on electrochemical performance of graphite as anode materials vol.36, pp.10, 2019, https://doi.org/10.1007/s11814-019-0354-3