DOI QR코드

DOI QR Code

Moisture distribution in concrete subjected to rain induced wetting-drying

  • Received : 2013.01.29
  • Accepted : 2014.07.23
  • Published : 2014.12.25

Abstract

A rational estimation of moisture distribution in structural concrete is vital for predicting the possible extent and rate of progression of impending degradation processes. The paper proposes a numerical scheme for analysing the evolution of moisture distribution in concrete subjected to wetting-drying exposure caused by intermittent periods of rainfall. The proposed paradigm is based on the stage wise implementation of non-linear finite element (FE) analysis, with each stage representing a distinct phase of a typical wet-dry cycle. The associated boundary conditions have been constituted to realize the influence of various meteorological elements such as rain, wind, relative humidity and temperature on the exposed concrete surface. The reliability of the developed scheme has been demonstrated through its application for the simulation of experimentally recorded moisture profiles reported in published literature. A sensitivity analysis has also been carried out to study the influence of critical material properties on simulated results. The proposed scheme is vital to the service life modelling of concrete structures in tropical climates which largely remain exposed to the action of alternating rains.

Keywords

References

  1. Andrade, C., Alonso, C. and Sarria, J. (2002), "Corrosion rate evaluation in concrete structures exposed to atmosphere", Cement Concrete Comp., 24(1), 55-64. https://doi.org/10.1016/S0958-9465(01)00026-9
  2. Andrade, C., Sarria, J. and Alonso, C. (1999), "Relative humidity in the interior of concrete exposed to natural and artificial weathering", Cement Concrete Res., 29(8), 1249-1259. https://doi.org/10.1016/S0008-8846(99)00123-4
  3. Schiessl, P. (1988), Corrosion of steel in concrete, Report of the technical committee 60-CSC RILEM, Chapman and Hall, London and New York.
  4. Bazant, Z.P. and Najjar, L.J. (1972), "Nonlinear water diffusion in non saturated concrete", Mater. Struct., 5(1), 3-20.
  5. Bazant, Z.P. and Najjar, L.J. (1971), "Drying of concrete as a non linear diffusion problem", Cement Concrete Res., 1(5), 461-473. https://doi.org/10.1016/0008-8846(71)90054-8
  6. Blocken, B. and Carmeliet, C. (2004), "A review of rain driven wind research in building science", J. Wind Eng Ind. Aerod., 92(13), 1079-1130. https://doi.org/10.1016/j.jweia.2004.06.003
  7. Broomfield, J.P. (2007), Corrosion of steel in concrete: understanding, investigation and repair. 2nd ed., Taylor & Francis, London, England and New York, USA.
  8. Cano-Barrita, P.F.de.J., Balcom, B.J., Bremner, T.W., MacMillan, M.B. and Langley, W.S. (2004), "Moisture distribution in drying ordinary and high performance concrete cured in a simulated hot dry climate", Mater. Struct., 37(8), 522-531. https://doi.org/10.1007/BF02481576
  9. de Beer, F.C., Strydom, W.J. and Griesel, E.J. (2004), "The drying process of concrete: a neuron radiography study", Appl. Radiat. Isotopes, 61(4), 617-623. https://doi.org/10.1016/j.apradiso.2004.03.087
  10. Espinosa, R.M. and Franke, L. (2006), "Inkbottle pore-method: prediction of hygroscopic water content in hardened cement paste at variable climatic conditions", Cement Concrete Res., 36 (10), 1954-1968. https://doi.org/10.1016/j.cemconres.2006.06.011
  11. Gawin, D., Pesavento, F. and Schrefler, B.A. (2006a), "Hygro-thermo-chemo-mechanical modelling of concrete at early ages and beyond. Part I: Hydration and hygro-thermal phenomena", Int. J. Numer. Meth. Eng., 67(3), 299-331. https://doi.org/10.1002/nme.1615
  12. Gawin, D., Pesavento, F. and Schrefler, B.A. (2006b), "Hygro-thermo-chemo-mechanical modelling of concrete at early ages and beyond. Part II: Shrinkage and Creep of Concrete", Int. J. Numer. Meth. Eng., 67(3), 332-363. https://doi.org/10.1002/nme.1636
  13. Hall, C. (1994), "Barrier performance of concrete: a review of fluid transport theory", Mater. Struct., 27 (5), 291-306. https://doi.org/10.1007/BF02473048
  14. Hall, C. (1989), "Water sorptivity of mortars and concretes: a review", Mag. Concrete Res., 41 (147), 51-61. https://doi.org/10.1680/macr.1989.41.147.51
  15. Hall, C. & Hoff, W.D. (2002), Water transport in brick, stone and concrete, Taylor & Francis, London, England and New York, USA.
  16. Hall, C. and Kalimeris, A.N. (1982), "Water movement in porous building materials - V. Absorption and shedding of rain by building surfaces", Build. Environ., 17(4), 257-262. https://doi.org/10.1016/0360-1323(82)90018-X
  17. Hall, C., Hoff, W.D. and Nixon, M.R. (1984), "Water movement in porous building materials - VI. Evaporation and drying in brick and block materials", Build. Environ., 19 (1), 13-20. https://doi.org/10.1016/0360-1323(84)90009-X
  18. Hanson, J.A. (1968), "Effects of curing and drying environments on splitting tensile strength", ACI Mater. J., 65(7), 535-543.
  19. Hillel, D. (1973), Soil and Water - Physical Principles and Processes, Academic Press, New York, USA and London, England.
  20. IS 8112 (1989), Specification for 43 Grade Ordinary Portland Cement, Bureau of Indian Standards, New Delhi, India.
  21. Isgor, O.B. and Razaqpur, A.G. (2004), "Finite element modeling of coupled heat transfer, moisture transport and carbonation processes in concrete structures", Cement Concrete Comp., 26 (1), 57-73. https://doi.org/10.1016/S0958-9465(02)00125-7
  22. Ishida, T., Maekawa, K. and Kishi, T. (2007), "Enhanced modelling of moisture equilibrium and transport in cementitious materials under arbitrary temperature and relative humidity history", Cement Concrete Res., 37 (4), 565-578. https://doi.org/10.1016/j.cemconres.2006.11.015
  23. ISO 15927-3 (2009), Hydrothermal performance of buildings - Calculation and presentation of climatic data - Part 3, Calculation of a driving rain index for vertical surfaces from hourly wind and rain data. DIN, Germany.
  24. Ju, S.H. and Kung, K.J.S. (1997), "Mass types, element orders and solution schemes for the Richard's equation", Comput. Geosci., 23(2), 175-187. https://doi.org/10.1016/S0098-3004(97)85440-4
  25. Kondraivebdhan, B. and Bhattacharjee, B. (2010), "Effect of age and water-cement ratio on size dispersion of pores in ordinary portland cement paste", ACI Mater. J., 107 (2), 147-154.
  26. Kondraivendhan, B. (2010), "Influence of w/c ratio and age on pore size distribution of OPC and fly ash pastes and mortars", Ph.D. Dissertation, Indian Institute of Technology Delhi, New Delhi.
  27. Lacy, R.E. (1977), Climate and building in Britain, HMSO, London.
  28. Leech, C., Lockington, D. and Dux, P. (2003), "Unsaturated diffusivity functions for concrete derived from NMR images", Mater. Struct. 36 (6), 413-418. https://doi.org/10.1007/BF02481067
  29. Li, C., Li, K. and Chen, Z. (2008a), "Numerical analysis of moisture influential depth in concrete and its application in durability design", Tsinghua Science and Technology, 13(1), 7-12. https://doi.org/10.1016/S1007-0214(08)70119-6
  30. Li, C., Li, K. and Chen, Z. (2008b), "Numerical analysis of moisture influential depth in concrete during drying-wetting cycles", Tsinghua Sci. Technol., 13(5), 696-701. https://doi.org/10.1016/S1007-0214(08)70113-5
  31. Lin, S.H. (1992), "Nonlinear water diffusion in unsaturated porous solid materials", Int. J. Engng. Sci., 30(12), 1677-1682. https://doi.org/10.1016/0020-7225(92)90087-W
  32. Lopez, W. and Gonzalez, J.A. (1993), "Influence of the degree of pore saturation on the resistivity of concrete and the corrosion rate of steel reinforcement", Cement Concrete Res., 23 (2), 368-376. https://doi.org/10.1016/0008-8846(93)90102-F
  33. Lyklema, J. (1991), Fundamentals of Interface and Colloid Science: Liquid-Fluid Interfaces, Academic Press, London, England.
  34. Neville, A.M. and Brooks, J.J. (1987), Concrete Technology, Pearson Education Ltd., New Delhi, Delhi, India.
  35. Nilsson, L. (1996), "Interaction between microclimate and concrete - a prerequisite for deterioration", Const. Build. Mater., 10 (5), 301-308. https://doi.org/10.1016/0950-0618(95)00046-1
  36. Oteh, U.U. (1985), "Equations for psychrometric calculations", Int. J. Refrig., 8(2), 116-117. https://doi.org/10.1016/0140-7007(85)90084-2
  37. Palyvos, J.A. (2008), "A survey of wind convection coefficient relations for building envelope energy systems' modelling", Appl. Therm. Eng., 28 (8-9), 801-808. https://doi.org/10.1016/j.applthermaleng.2007.12.005
  38. Parrott, L.J. (1990), "Damage caused by carbonation of reinforced concrete", Mater. Struct., 23 (3), 230-234. https://doi.org/10.1007/BF02473023
  39. Patil, S.G. and Bhattacharjee, B. (2008), "Size and volume relationship of pore for construction materials", J. Mater. Civil Eng., 20 (6), 410-418. https://doi.org/10.1061/(ASCE)0899-1561(2008)20:6(410)
  40. Pel, L. (1995), "Moisture transport in porous building materials", Ph.D. Dissertation, Technische Universiteit Eindhoven, Netherlands.
  41. Reddy, J.N. (2005), An Introduction to the Finite Element Method. 3rd ed., TMH, New Delhi, Delhi, India.
  42. Ryu, D.W., Ko, J.W. and Noguchi, T. (2011), "Effects of simulated environmental conditions on the internal relative humidity and relative moisture content distribution of exposed concrete", Cement Concrete Comp. 33 (1), 142-153. https://doi.org/10.1016/j.cemconcomp.2010.09.009
  43. Saetta, A.V., Schrefler, B.A. and Vitaliani, R.V. (1993), "The carbonation of concrete and the mechanism of moisture, heat and carbon dioxide flow through porous materials", Cement Concrete Res., 23 (4), 761-772. https://doi.org/10.1016/0008-8846(93)90030-D
  44. Saetta, A.V., Schrefler, B.A. and Vitaliani, R.V. (1995), "2-D model for carbonation and moisture/heat flow in porous materials", Cement Concrete Res., 25 (8), 1703-1712. https://doi.org/10.1016/0008-8846(95)00166-2
  45. Selih, J., Sousa, A.C.M. and Bremner, T.W. (1996), "Moisture transport in initially fully saturated concrete during drying", Transport Porous Med., 24 (1), 81-106. https://doi.org/10.1007/BF00175604
  46. Smith, J.M., Van Ness H.C. and Abbott, M.M. (2005), Introduction to Chemical Engineering Thermodynamics. 7th ed., TMH, New York, NY, USA.
  47. Terrill, J.M., Richardson, M. and Selby, A.R. (1986), "Non-linear moisture profiles and shrinkage in concrete members", Mag. Concrete Res., 38 (137), 220-225. https://doi.org/10.1680/macr.1986.38.137.220
  48. Thomas, J.J., Jennings, H.M. and Andrew, J.A. (1999), "The surface area of hardened cement paste as measured by various techniques", Concrete Science Eng., 1(1), 45-64.
  49. Toei, R. (1996), "Theoretical fundamentals of drying operation", Dry. Technol., 14 (1), 1-194. https://doi.org/10.1080/07373939608917089
  50. West, R. and Holmes, N. (2001), "Experimental investigation of moisture migration in concrete", Proceedings of the Colloquium on Concrete Research in Ireland, NUI, Galway, September.
  51. Wong, S.F., Wee, T.H., Swaddinwudhipong, S. and Lee, S.L. (2001), "Study of water movement in concrete", Mag. Concrete Res. 53 (3), 205-220. https://doi.org/10.1680/macr.2001.53.3.205
  52. Zhang, J., Gao, Y. and Han, Y. (2012), "Interior humidity of concrete under dry-wet cycles", J. Mater. Civil Eng., 24(3), 289-298. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000382
  53. Yeo, T.L., Cox, M.A.C., Boswell, L.F., Sun, T. and Grattan, K.T.V. (2006a), "Optical fibre sensors for monitoring ingress of moisture in structural concrete", Rev. Sci. Instrum., 77(5), 055108-055108-7. https://doi.org/10.1063/1.2200744
  54. Yeo, T.L., Cox, M.A.C., Boswell, L.F., Sun, T. and Grattan, K.T.V. (2006b), "Monitoring ingress of moisture in structural concrete using a novel optical-based sensor approach", J. Phys. Conf. Ser., 45(1), 186-192. https://doi.org/10.1088/1742-6596/45/1/025
  55. Norris, A., Saafi, M. and Romine, P. (2008), "Temperature and moisture monitoring in concrete structures using embedded nanotechnology/microelectromechanical systems (MEMS) sensors", Const. Build. Mater., 22(2), 111-120. https://doi.org/10.1016/j.conbuildmat.2006.05.047
  56. Zhang, P., Wittmann, F.H., Zhao, T., Lehmann, E.H. and Vontobel, P. (2011). "Neutron radiography, a powerful method to determine time-dependent moisture distributions in concrete", Nucl. Eng. Des., 241(12), 4758-4766. https://doi.org/10.1016/j.nucengdes.2011.02.031
  57. Stewart, M.G., Wang, X. and Nguyen, M.N. (2011), "Climate change impact and risks of concrete infrastructure deterioration", Eng. Struct., 33(4), 1326-1337. https://doi.org/10.1016/j.engstruct.2011.01.010
  58. Talukdar, S. and Banthia, N. (2013), "Carbonation in concrete infrastructure in the context of global climate change: Development of a service lifespan model", Const. Build. Mater., 40(2013), 775-782. https://doi.org/10.1016/j.conbuildmat.2012.11.026

Cited by

  1. A simple practical method for determination of moisture transfer coefficient of mature concrete using a combined experimental-numerical approach vol.18, pp.3, 2016, https://doi.org/10.12989/cac.2016.18.3.367
  2. Localisation of embedded water drop in glass composite using THz spectroscopy vol.21, pp.6, 2018, https://doi.org/10.12989/sss.2018.21.6.751