DOI QR코드

DOI QR Code

Manufacture of melting temperature controllable modified sulfur (MS) and its application to MS concrete

융점 제어형 개질유황의 개발 및 이를 활용한 콘크리트의 특성 연구

  • Received : 2014.09.04
  • Accepted : 2014.12.05
  • Published : 2014.12.31

Abstract

In this study, we manufactured melting temperature controllable modified surfur (MS) and studied the properties of sulfur modified cement concrete (SMC). We investigated the effects of sulfur and pyridine content on melting temperature of MS. The reaction is confirmed by measuring Raman spectrophotoscopy. The SMC was produced at Water (W)/Cement (C) = 45 wt%, Sand (S)/Aggregate (A) = 45 wt% and 5, 10, 15 and 20 % of MS on the basis of conventional portland cement, respectively. And then physical properties such as compressive strength, splitting tensile strength and permeability of SMC were measured. As MS added, permeability was decreased, while strength and spalling properties were improved. To confirm the safety of MS and SMC, pyrolyzed gas chromatography (P-GC) and gas hazard test were conducted. The results showed that MS and SMC were relatively safe at an elevated temperature.

본 연구에서는 용융 온도 제어형 개질 유황(MS)을 제조하였고, 이를 포함한 개질유황시멘트콘크리트(SMC)의 특성을 연구하였다. 저융점 개질유황의 합성에 있어서 황 함량과 피리딘 함량에 따른 효과를 살펴보았고, 반응은 라만분광기를 이용하여 확인하였다. SMC는 일반 포틀랜드시멘트 대비 Water (W)/Cement (C) = 45 wt%, Sand (S)/Aggregate (A) = 45 wt%로 하였고, 5, 10, 15, 20 %로 개질유황 혼입율을 다르게 하여 제조하였다. 그리고 SMC의 압축강도, 쪼갬인장강도, 투수계수 등의 물성을 측정하였으며 비폭렬성을 확인하였다. 개질유황이 첨가됨에 따라 낮은 물흡수를 보였으며, 강도 증가와 비폭렬성 증진에 다소 효과가 있음을 확인하였다. 또한, MS와 SMC의 안전성을 확인하기 위하여 Pyrolized-gas chromatography(P-GC)를 통한 고온에서의 발생 물질 및 가스 독성 실험을 진행하였고, 그 결과 고온에서의 안전성을 확인할 수 있었다.

Keywords

References

  1. K.H. Kim, D.C. Shin, H.J. Jung, J.N. Lee and B.G. Kim, "The quality properties of mortar for using hydraulic modification sulfur as admixture for cement", J. Rec. Const. Resources 6 (2011) 81.
  2. M.S. Shin, K.H. Kim, S.W. Gwon and S.W. Char, "Durability of sustainable sulfur concrete with fly ash and recycled aggregate against chemical and weathering environments", Constr. Build. Mater. 69 (2014) 167. https://doi.org/10.1016/j.conbuildmat.2014.07.061
  3. M.M. Vlahovic, S.P. Martinovic, T.D. Boljanac, P.B. Jovanic and T.D. Volkov-Husovic, "Durability of sulfur concrete in various aggressive environments", Constr. Build. Mater. 25 (2011) 3926. https://doi.org/10.1016/j.conbuildmat.2011.04.024
  4. K.H. Chung and Y.K. Hong, "Weathering properties of elastic rubber concrete comprising waste tire solution", Polym. Eng. Sci. 49 (2009) 794. https://doi.org/10.1002/pen.21312
  5. S.G Bea, S.W. Gwon, S.W. Kim and S.W. Cha, "Physical properties of sulfur concrete with modified sulfur binder", J. Korean Society of Civil Engineers. 34 (2014) 763. https://doi.org/10.12652/Ksce.2014.34.3.0763
  6. S.W. Cha, K.S. Kim and H.S. Park, "Manufacture of modified sulfur polymer binder and characteristics of sulfur concrete", J. Korea Concrete Institute 23 (2011) 40.
  7. S.G. Yu, H.j. Choi, H. Kwon, N.K. Park and G.D. Kim, "Properties of portland cement concrete with the addition of a modified sulfur polymer", J. Korean Cryst. Growth Cryst. Technol. 20 (2010) 192. https://doi.org/10.6111/JKCGCT.2010.20.4.192
  8. S.H. Bae, "Characteristics of sulfur mortar and concrete", J. Korea Concrete Institute 4 (1992) 58.
  9. J.H. Yoon, Y.S. Yoo and J.K. Lee, "Sulfur concrete", J. Korea Concrete Institute 15 (2003) 46.
  10. W.W. Duecker, "Admixtures improve properties of sulfur cements", Chem. Metall. Eng. 41 (1934) 583.
  11. W.H. Kobbe, "New uses for sulfur in industry", Ind. Eng. Chem. 16 (1924) 1026. https://doi.org/10.1021/ie50178a015
  12. K.D. Kim and S.G. Kang, "Manufacturing artificial lightweight aggregates using coal bottom ash and its application to the lightweight-concretes", J. Korean Cryst. Growth Cryst. Technol. 18 (2008) 211.
  13. M.A. Rodriguez-Perez, R.A. Campo-Arnaiz, R.F. Aroca and J.A. de Saja, "Characterisation of the matrix polymer morphology of polyolefins foams by Raman spectroscopy", Polymer. 46 (2005) 12093. https://doi.org/10.1016/j.polymer.2005.08.098

Cited by

  1. Evaluation of cement mortars blended with copper alloy slag vol.25, pp.1, 2015, https://doi.org/10.6111/JKCGCT.2015.25.1.039