DOI QR코드

DOI QR Code

Effect of Support Geometry on Catalytic Activity of Pt/CeO2 Nanorods in Water Gas Shift Reaction

Water Gas Shift 반응에서 Pt/CeO2 촉매의 지지체구조에 따른 촉매활성 연구

  • Im, Hyo Been (Graduate School of Energy Science and Technology, Chungnam National University) ;
  • Kwon, Soon Jin (Graduate School of Energy Science and Technology, Chungnam National University) ;
  • Byun, Chang Ki (Graduate School of Energy Science and Technology, Chungnam National University) ;
  • Ahn, Hee Sung (Department of Chemical Engineering Education, Chungnam National University) ;
  • Koo, Kee Young (Hydrogen Energy Research Lab, Korea Institute of Energy Research) ;
  • Yoon, Wang Lai (Hydrogen Energy Research Lab, Korea Institute of Energy Research) ;
  • Yi, Kwang Bok (Department of Chemical Engineering Education, Chungnam National University)
  • 임효빈 (충남대학교 에너지과학기술대학원) ;
  • 권순진 (충남대학교 에너지과학기술대학원) ;
  • 변창기 (충남대학교 에너지과학기술대학원) ;
  • 안희성 (충남대학교 화학공학교육과) ;
  • 구기영 (한국에너지기술연구원) ;
  • 윤왕래 (한국에너지기술연구원) ;
  • 이광복 (충남대학교 화학공학교육과)
  • Received : 2014.10.13
  • Accepted : 2014.12.31
  • Published : 2014.12.30

Abstract

Nanorod and particle shape $CeO_2$ were synthesized via hydrothermal process and precipitation method, respectively, and used as supports of Pt catalyst for water gas shift (WGS) reaction. Three different durations (12, 48, and 96h) for hydrothermal process were applied for the preparation of nanorod type $CeO_2$. 1.0 wt% of Pt was loaded on the prepared supports with incipient wetness method prior to the catalytic activity tests that were carried out at a GHSV of $95,541h^{-1}$, and a temperature range of 200 to $360^{\circ}C$. Varying duration of hydrothermal process led to the difference in physical characteristics of $CeO_2$ nanorods, such as aspect ratio, BET surface area, pore diameter, and pore volume. Consequently, the catalytic activities of Pt/$CeO_2$ nanorods were affected by the physical characteristics of the supports and appeared to be in the order of Pt/$CeO_2$(12) > Pt/$CeO_2$(48) > Pt/$CeO_2$(96). The comparison of the catalytic activities and results of the analysis (XPS, XRD, SEM, BET and TPR) for the supports revealed that the activity of the catalysts depends on chemical states of the Pt and the support materials in the temperature range that is lower than $280^{\circ}C$. However, the activity is rather dependent on the physical characteristic of the supports because the increased gas velocity limits the mass transfer of reactants in micropores of the supports.

Keywords

References

  1. M. Mikkelsen, M. Jorgensen and F. C. Krebs, "The teraton challenge. A review of fixation and transformation of carbon dioxide", Energy & Environmental Science, Vol. 3, 2010, pp. 43-81. https://doi.org/10.1039/B912904A
  2. B. R. J, M. Loganathany and M. S. Shantha, "A Review of the Water Gas Shift Reaction Kinetics", International Journal of Chemical Reactor Engineering, Vol. 8, 2010, Review R4.
  3. P. Panagiotopoulou, and D. I. Kondarides, "Effect of the nature of the support on the catalytic performance of noble metal catalysts for the water-gas shift reaction", Catalysis Today, Vol. 112, 2006, pp. 49-52. https://doi.org/10.1016/j.cattod.2005.11.026
  4. H. S. Roh, D. W. Jeong, K. S. Kim, I. H. Eum, K. Y. Koo and W. L. Yoon, "Single Stage Water-Gas Shift Reaction Over Supported Pt Catalysts", Catalysis Letters, Vol. 141, 2011, pp. 95-99. https://doi.org/10.1007/s10562-010-0480-3
  5. L. Z. Linganiso, V. R. R. Pendyala, G. Jacobs, B. H. Davis, D. C. Cronauer, A. J. Kropf and C. L. Marshall, "Low-Temperature Water-Gas Shift: Doping Ceria Improves Reducibility and Mobility of O-Bound Species and Catalyst Activity", Catalysis Letter, Vol. 141, 2011, pp. 1723-1731. https://doi.org/10.1007/s10562-011-0720-1
  6. J. B. Park, J. Graciani, J. Evans, D. Stacchiola, S. D. Senanayake, L. Barrio, P. Liu, J. F. Sanz, J. Hrbek and J. A. Rodriguez, "Gold, Copper, and Platinum Nanoparticles Dispersed on CeOx/$TiO_2$(110) Surfaces: High Water-Gas Shift Activity and the Nature of the Mixed-Metal Oxide at the Nanometer Level", Journal of American Chemical Society, Vol. 132, 2010, pp. 356-363. https://doi.org/10.1021/ja9087677
  7. A. Wootsch, C. Descorme, and D. Duprez, "Preferential oxidation of carbon monoxide in the presence of hydrogen (PROX) over ceriazirconia and alumina-supported Pt catalysts", Journal of Catalysis, Vol. 225, 2004, pp. 259-266. https://doi.org/10.1016/j.jcat.2004.04.017
  8. Ch. Vignatti, M. S. Avila, C. R. Apesteguia and T. F. Garetto, "Catalytic and DRIFTS study of the WGS reaction on Pt-based catalysts", International Journal of Hydrogen Energy, Vol. 35, 2010, pp. 7302-7312. https://doi.org/10.1016/j.ijhydene.2010.04.180
  9. R. Si and M. F. Stephanopoulos, "Shape and Crystal-Plane Effects of Nanoscale Ceria on the Activity of Au-$CeO_2$ Catalysts for the Water-Gas Shift Reaction", Angewandte Chemie International Editon, Vol. 47, 2008, pp. 2884-2887. https://doi.org/10.1002/anie.200705828
  10. S. Zhang, J. Shan, Y. Zhu, A. I. Frenkel, A.nitha Patlolla, W. Huang, S. J. Yoon, L. Wang, H. Yoshida, S. Takeda, and F. Tao, "WGS Catalysis and In Situ Studies of $CoO_{1−x}$, $PtCo_n/Co_3O_4$, and $Pt_mCo_m'/CoO_{1−x}$ Nanorod Catalysts", Journal of American Chemical Society, Vol. 135, 2013, pp. 8283-8293. https://doi.org/10.1021/ja401967y
  11. Z. Y. Yuan, V. Idakie, A. Vantomme, T. Tabakov, T. Z. Ren and B. L. Su, "Mesoporous and nanostructured $CeO_2$ as supports of nano-sized gold catalysts for low-temperature water-gas shift reaction", Cataysis Today, Vol. 131, 2008, pp. 203-210. https://doi.org/10.1016/j.cattod.2007.10.050
  12. C. Wen, Y. Zhu, Y. Ye, S. Zhang, F. Cheng, Y. Liu, P. Wang, and F. Tao, "Water Gas Shift Reaction on Metal Nanoclusters Encapsulated in Mesoporous Ceria Studied with Ambient-Pressure X-ray Photoelectron Spectroscopy", ACS nano, Vol. 6, No. 10, 2012, pp. 9305-9313. https://doi.org/10.1021/nn303901q
  13. J. E. Spanier, R. D. Robinson, F. Zhang, S. W. Chan, and I. P. Herman, "Size-dependent properties of $CeO_{2-y}$ nanoparticles as studied by Raman scattering", Physical Review B, Vol. 64, 2001, p. 245407. https://doi.org/10.1103/PhysRevB.64.245407
  14. F. Zhang, S. W. Chan, J. E. Spanier, E. Apak, Q. Jin, R. D. Robinson, and I. P. Herman, "Cerium oxide nanoparticles: Size-selective formation and structure analysis", Applied Physics Letters Vol. 80, 2002, p. 127. https://doi.org/10.1063/1.1430502
  15. T. Masui, K. Fujiwara, K. Machida, and G. Adachi, "Characterization of Cerium(IV) oxide Ultrafine Particles Prepared Using Reversed Micelles", Chemistry Mater., Vol. 9, 1997, p. 2197. https://doi.org/10.1021/cm970359v
  16. M. Hirano and E. Kato, "Hydrothermal Synthesis of Nanocrystalline Cerium(IV) Oxide Powders", Journal of the American Ceramic Society, Vol. 82, 1999, pp. 786-788.
  17. C. Sun, H. Li, H. Zhang, Z. Wang and L. Chen, "Controlled synthesis of $CeO_2$ nanorods by a solvothermal method", Nanotechnology, Vol. 16, 2005, pp. 1454-1463. https://doi.org/10.1088/0957-4484/16/9/006
  18. L. Yin, Y. Wang, G. Pang, Y. Koltypin, and A. Gedanken, "Sonochemical Synthesis of Cerium Oxide Nanoparticles Effect", Journal of Colloid and Interface Science, Vol. 246, 2002, pp. 78-84. https://doi.org/10.1006/jcis.2001.8047
  19. A. Vantomme, Z. Y. Yuan, G. Du, and B. L. Su, "Surfactant Assisted Large Scale Preparation of Crystalline $CeO_2$ Nanorods", Langmuir, Vol. 25, 2005, pp. 1132-1135.
  20. P. Panagiotopoulou, A. Christodoulakis, D. I. Kondarides and S. Boghosian, "Particle size effects on the reducibility of titanium dioxide and its relation to the water-gas shift activity of Pt/$TiO_2$ catalysts", Journal of Catalysis, Vol. 240, 2006, pp. 114-125. https://doi.org/10.1016/j.jcat.2006.03.012
  21. P. Panagiotopoulou and D. I. Kondarides, "Effect of morphological characteristics of $TiO_2$-supported noble metal catalysts on their activity for the water-gas shift reaction", Journal Catalysis, Vol. 225, 2004, pp. 327-336. https://doi.org/10.1016/j.jcat.2004.04.030
  22. J. H. Pazmino, M. Shekhar, W. D. Williams, M. C. Akatay, J. T. Miller, W. N. Delgass and F. H. Ribeiro, "Metallic Pt as active sites for the watergas shift reaction on alkali-promoted supported catalysts", Journal Catalysis, Vol. 286, 2012, pp. 279-286. https://doi.org/10.1016/j.jcat.2011.11.017
  23. P. Panagiotopoulou, J. Papavasiliou and G. Avgouropoulos, "Water-gas shift activity of doped Pt/$CeO_2$ catalysts", Chemical Engineering Journal, Vol. 134, 2007, pp. 16-22. https://doi.org/10.1016/j.cej.2007.03.054
  24. J. Vecchietti, A. Bonivardi, W. Xu, D. Stacchiola, J. J. Delgado, M. Calatayud ,and S. E. Collins, "Understanding the Role of Oxygen Vacancies in the Water Gas Shift Reaction on Ceria-Supported Platinum Catalysts", ACS catalysis, Vol. 4, 2014, pp. 2088-2096. https://doi.org/10.1021/cs500323u
  25. W. Deng, J. D. Jesus, H. Saltsburg, M. Fytzani-Stephanopoulos, "Low-content gold-ceria catalysts for the water-gas shift and preferential CO oxidation reactions", Applied Catalysis A, Vol. 291, 2005, pp. 126-135. https://doi.org/10.1016/j.apcata.2005.02.048
  26. R. Takahashi, S. Sato, T. Sodesawa and H. Nishida, "Effect of pore size on the liquid-phase pore diffusion of nickel nitrate", Physical Chemistry Chemical Physics, Vol. 4, 2002, pp. 3800-3805. https://doi.org/10.1039/b202024f
  27. J. Datta, A. Dutta, and S. Mukherjee "The Beneficial Role of the Cometals Pd and Au in the Carbon-Supported Pt Pd Au Catalyst Toward Promoting Ethanol Oxidation Kinetics in Alkaline Fuel Cells: Temperature Effect and Reaction Mechanism", Journal of Physical Chemistry C, Vol. 115, 2011, pp. 15324-15334. https://doi.org/10.1021/jp200318m