DOI QR코드

DOI QR Code

Determining Effect of Oyster Shell on Cadmium Extractability and Mechanism of Immobilization in Arable Soil

농경지 토양에서 패화석에 의한 카드뮴의 용출성 및 부동화 기작 구명

  • Hong, Chang-Oh (Department of Life Science and Environmental Biochemistry, Pusan National University) ;
  • Noh, Yong-Dong (Department of Life Science and Environmental Biochemistry, Pusan National University) ;
  • Kim, Sang-Yoon (Institute of Agriculture and Life Sciences, Gyeongsang National University) ;
  • Kim, Pil-Joo (Institute of Agriculture and Life Sciences, Gyeongsang National University)
  • 홍창오 (부산대학교 생명환경화학과) ;
  • 노용동 (부산대학교 생명환경화학과) ;
  • 김상윤 (경상대학교 농업생명과학원) ;
  • 김필주 (경상대학교 농업생명과학원)
  • Received : 2014.07.02
  • Accepted : 2014.10.13
  • Published : 2014.12.31

Abstract

BACKGROUND: Oyster shell(OS) is alkaline with pH 9.8, porous, and has high concentration of $CaCO_3$. It could be used as an alternative of lime fertilizer to immobilize cadmium(Cd) in heavy metal contaminated arable soil. Therefore, this study has been conducted to compare effects of calcium(Ca) materials [OS and $Ca(OH)_2$] on Cd extractability in contaminated soil and determined mechanisms of Cd immobilization with OS. METHODS AND RESULTS: Both Ca materials were added at the rates of 0, 0.1, 0.2, 0.4, and 0.8% (wt Ca wt-1) in Cd contaminated soil and the mixtures were incubated at $25^{\circ}C$ for 4 weeks. Both Ca materials increased pH and negative charge of soil with increasing Ca addition and decreased 1N $NH_4OAc$ extractable Cd concentration. 0.1 N HCl extractable Cd concentration markedly decreased with addition of OS. 1 N $NH_4OAc$ extractable Cd concentration was related with pH and net negative charge of soil, but not with 0.1 N HCl extractable Cd concentration. We assumed that Cd immobilization with $Ca(OH)_2$ was mainly attributed to Cd adsorption resulted from increase in pH-induced negative charge of soil. Scanning electron microscope (SEM) images and energy dispersive spectroscopy(EDS) analyses were conducted to determine mechanism of Cd immobilization with OS. There was no visible precipitation on surface of both Ca materials. However, Cd was detected in innerlayer of OS by EDS analyses but not in that of $Ca(OH)_2$. CONCLUSION: We concluded that Cd immobilization with OS was different from that with $Ca(OH)_2$. OS might adsorbed interlayer of oyster shell or have other chemical reactions.

패화석에 의한 카드뮴의 용출특성과 부동화 기작을 구명하기 위해 우리나라의 대표적인 석회비료인 소석회를 비교구로 선정하여 실내에서 비교시험을 실시하였다. 두 칼슘제재의 처리량을 증가시킴에 따라 토양의 pH와 음하전도는 증가하는 결과를 나타내었으나 소석회가 패화석에 비해 토양의 pH와 음하전도를 증대시키는 효과가 더욱 우수하였다. 소석회는 패화석에 비해 1 N $NH_4OAc$ extractable Cd의 함량을 감소시키는 효과가 더욱 우수한 것으로 조사된 반면 패화석은 소석회에 비해 0.1 N HCl extracble Cd의 함량을 감소시키는 효과가 더욱 우수한 것으로 조사되었다. 본 연구에서 소석회에 의한 카드뮴의 부동화기작은 주로 토양의 음하전도의 증대에 기인된 카드뮴의 흡착에 의한 것으로 판단된다. 그러나 패화석에 의한 카드뮴의 부동화기작은 음하전도의 증대에 기인된 카드뮴의 흡착 이외에 부가적으로 다공성의 패화석 내부에 카드뮴이 물리적으로 흡착되어지는 것에 기인되는 것으로 판단된다. 결과적으로 패화석은 토양 내 식물이 이용하기 쉬운 형태의 카드뮴의 함량(F2)을 저감시키고 식물이 거의 이용하기 힘든 형태의 카드뮴의 함량(F5)을 증가시켜 카드뮴으로 오염되어진 농경지에서 식물의 카드뮴 흡수를 저감시키기 위한 토양개량제로써의 활용가능성이 높은 것으로 평가되었다.

Keywords

References

  1. Adriano, D.C., 2001, Trace elements in terrestrial environments; biogeochemistry, bioavailability and risks of metals, p. 866, 2nd ed. Springer, New York, USA.
  2. Allison, L.E., 1965, Organic carbon. in: Black, C.A., (Eds), Methods of Soil analysis, Part 2. American Society of Agronomy, Monograph No. 9. Madison, Wisconsin, USA, pp. 1367-1378.
  3. Andersson, A., Siman, G., 1991. Levels of Cd and some other trace elements in soils and crops as influenced by lime and fertilizer level, Acta Agric. Scand. 41, 3-11. https://doi.org/10.1080/00015129109438579
  4. Ariza, J.L., Giraldez., G.I., Sanchez-Rodas, D., Morale, E., 2000. Comparison of the feasibility of three extraction procedures for trace metal partitioning in sediments from south-west Spain, Sci. Total Environ. 246, 271-283. https://doi.org/10.1016/S0048-9697(99)00468-4
  5. Barrow, N.J., 1985. Reactions of anions and cations with variable charge soils, Adv. Agron. 38, 183-230.
  6. Basta, N.T., Sloan, J.J., 1999. Bioavailability of heavy metals in strongly acidic soils treated with exceptional quality biosolids, J. Environ. Qual. 28, 633-638.
  7. Bingham, F.T., 1979. Bioavailability of Cd to food crops in relation to heavy metal contents of sludge-amended soil, Environ. Health Perspect. 28, 39-43. https://doi.org/10.1289/ehp.792839
  8. Bolan, N.S., Naidu, R., Syers, J.K., Tillman, R.W. 1999. Surface charge and solute interactions in soils, Adv. Agron. 67, 87-140. https://doi.org/10.1016/S0065-2113(08)60514-3
  9. Bolan, N.S., Mahimairaja, S., Kunhikrishnan, A., Naidu, R., 2013. Sorption-bioavailability nexus of arsenic and cadmium in variable-charge soils, J. Hazardous Materials 261, 725-732. https://doi.org/10.1016/j.jhazmat.2012.09.074
  10. Bolan, N.S., Adriano, D.C., Mani, P.A., Duraisamy, A., 2003. Immobilization and phytoavailability of cadmiumin in variable charge soils. II. Effect of lime addition, Plant and Soil 251, 187-198. https://doi.org/10.1023/A:1023037706905
  11. Bolan, N.S., Adriano, D.C., Duraisamy, P., Mani, A., Arulmozhiselvan, K., 2003. Immobilization and phytoavailability of cadmium in variable charge soils. I. Effect of phosphate addition, Plant and soil 250, 83-94. https://doi.org/10.1023/A:1022826014841
  12. Brallier, S., Harrison, R.B., Henry, C.L., Dongsen, X., 1996. Liming effects on availability of Cd, Cu, Ni and Zn in a soil amended with sewage sludge 16 years previously, Water Air Soil Pollut. 86, 195-206. https://doi.org/10.1007/BF00279156
  13. Bremner, J.M., 1965. Total nitrogen. in: Black, C.A., (Eds), Methods of Soil Analysis. Part 2. American Society of Agronomy, Monograph No. 9. Madison, Wisconsin, USA, pp. 1149-1178.
  14. Brun, L.A., Maillet, J., Hinsinger, P., Pepin, M., 2001. Evaluation of copper availability to plants in coppercontaminated vineyard soils, Environ. Pollut. 111, 293 -302. https://doi.org/10.1016/S0269-7491(00)00067-1
  15. Curtin, D., Campbell, C.A., Messer, D., 1996. Prediction of titratable acidity and soil sensitivity to pH change, J. Environ. Qual. 25, 1280-1284.
  16. Fernandes, M. L., Abreu, M.M., Calouro, F., Vaz, M.C., 1999. Effect of liming and cadmium application in an acid soil on cadmium availability to Sudan grass, Commun. Soil Sci. Plant Anal. 30, 1051-1062. https://doi.org/10.1080/00103629909370267
  17. Gommy, C., Perdrix, E., Galloo, J.C., Guillermo, R., 1998. Metal speciation in soil: extraction of exchangeable cations from a calcareous soil with a magnesium nitrate solution, Int. J. Environ. Anal. Chem. 72, 27-45. https://doi.org/10.1080/03067319808032642
  18. Gray, C.W., McLaren, R.G., Roberts, A.H.C., Condron, L.M., 1999. Effect of soil pH on cadmium phytoavailability in some New Zealand soils, N. Z. J. Crop Hort. 27, 169-179. https://doi.org/10.1080/01140671.1999.9514093
  19. Hetherington, L.E., Brown. T.J., Benham, A.J., Lusty, P.A.J., Idoine, N.E., 2007. World mineral production 2001-2005. NERC, p. 13.
  20. Heo, J.Y., Lee, S.T., Kim, M.G., Hong, K.P., Song, W.D., Rho, W.D., Cho, J.S., Lee, Y.H., 2010. Telationship between the incidence of Bitter pit and the application level of crushed oyster shell in apple orchard, Korean J. Soil Scil. Fert. 43, 637-643.
  21. Hong, C.O., Lee, D.K., Chung, D.Y., Kim, P.J., 2007. Liming effects on cadmium stabilization in upland soil affected by gold mining activity, Environ. Contam. Toxicol. 52, 496-502. https://doi.org/10.1007/s00244-006-0097-0
  22. Hong, C.O., Lee, D.K., Kim, P.J., 2008. Feasibility of phosphate fertilizer to immobilize cadmium in a field, Chemosphere 70, 2009-2015. https://doi.org/10.1016/j.chemosphere.2007.09.025
  23. Hong, C.O., Gutierrez, M.J., Yun, S.W., Lee, Y.B., Yu, C., Kim, P.J., 2009. Heavy metal contamination of arable soil and corn plant in the vicinity of zinc smelting factory ans stabilization by liming, Arch. Environ. Contam. Toxicol. 56, 190-200. https://doi.org/10.1007/s00244-008-9195-5
  24. John, M.K., VanLaerhoven, C.J., Chuah, H.H., 1972. Factors affecting plant uptake and phytotoxicity of cadmium added to soils, Environ. Sci. Technol. 6, 1005-1009. https://doi.org/10.1021/es60071a008
  25. Kaasalainen, M., Yli-Halla, M., 2003. Use of sequential extraction to assess metal partitioning in soils, Environ. Pollut. 126, 225-233. https://doi.org/10.1016/S0269-7491(03)00191-X
  26. Khan, D.H., Frankland, B., 1983. Effects of cadmium and lead on radish plants with particular reference to movement of metals through soil profile and plant, Plant Soil 70, 335-345. https://doi.org/10.1007/BF02374890
  27. Kim, J.G., Lee, H.S., Cho, J.G., Lee. Y.H., 1995. Composition of crushed otyster shell and its application effect on vegetables, J. Korean Soc. Soil Sci. Fert. 28, 350-355.
  28. Knox, A.S., Seaman, J.C., Mench, M.J., Vangronsveld, J., 2001. Remediation of metal- and radionuclidescontaminated soils by in situ stabilization techniques. in: Iskandar, I.K. (Eds), Environmental restoration of metals-contaminated soils, CRC Press LLC, Boca Raton, US Goverment, pp. 21-60.
  29. Kwon, H.B., Lee, C.W., Jun, B.S., Yun, J.D., Weon, S.Y., Koopman, B. 2004. Recycling waste oyster shells for eutrophication control, Resour. Conser. Recy. 41, 75-82. https://doi.org/10.1016/j.resconrec.2003.08.005
  30. Kreutzer, K., 1995. Effects of forest liming on soil processes, Plant and Soil 168-169, 447-470. https://doi.org/10.1007/BF00029358
  31. Lehozcky, E., Marth, P., Szabados, I., Szomolanyi, A., 2000. The cadmium uptake by lettuce on contaminated soils as influenced by liming, Commun. Soil Sci. Plant Anal. 31, 2433-2438. https://doi.org/10.1080/00103620009370597
  32. Lee, J.Y., Lee, C.H., Yoon, Y.S., Ha, B.H., Jang, B.C., Lee, K.S., Lee, D.K., Kim, P.J., 2005. Effects of oyster-shell meal on improving spring Chinese cabbage productivity and soil properties, J. Korean Soc. Soil Sci. Fert. 38, 274-280.
  33. Lee, S.T., Lee, Y.H., Lee, Y.J., Lee, C.H., 2004. Effect of oyster shell powder on soil pH and growth and yield of apple, J. Korean Soc. Soil Sci. Fert. 37, 383-387.
  34. Lee, Y.H., Kim, J.G., Lee, H.S., Cho, J.S., Ha, H.S., 1997. Effects of oyster shell, fly ash and gypsum application on rice yield and quality, J. Korean Soc. Sci. Fert. 30, 242-247.
  35. Li, Y.M., Chaney, R.L., Schneiter, A.A., Johnson, B.L., 1996. Effect of field limestone applications on cadmium content of sunflower (Helianthus annuus L.) leaves and kernels, Plant Soil 180, 297-302. https://doi.org/10.1007/BF00015313
  36. Lindsay, W.L., 1979. Chemical equilibria in soils, Chapter 19, Cadmium, pp. 316-326, John wiley & Sons, New York, USA.
  37. Maclean, A.J., 1976. Cadmium in different plant species and its availability in soils as influenced by organic-matter and additions of lime, P, Cd and Zn, Can. J. soil Sci. 56, 129-138. https://doi.org/10.4141/cjss76-021
  38. Maier, N.A., McLaughlin, M.J., Heap, M., Butt, M., Smart, M.K., Williams, C.M.J., 1997. Effect of currentseason application of calcitic lime on soil pH, yield and cadmium concentration in potato (Solanum tuberosum L) tubers, Nutr. Cycl. Agroecosyst. 47, 29-40.
  39. McBride, M.B., 1994. Environmental chemistry of soils, Chapter 9. Trace and toxic elements in soils, pp. 308-341, Oxford University Press, New York/Oxford, US Goverment.
  40. Naidu, R., Bolan, N.S., Kookana, R.S., Tiller, K.G., 1994. Ionic strength and pH effects on the adsorption of cadmium and the surface charge of soils, Eur. J. Soil Sci. 45, 419-429. https://doi.org/10.1111/j.1365-2389.1994.tb00527.x
  41. Naidu, R., Kookana, R.S., Sumner, M.E., Harter, R.D., Tiller, K.G., 1997. Cadmium sorption and transport in variable charge soils: a review, J. Environ. Qual. 26, 602-607.
  42. Singh, B.R., Narwal, R.P., Jeng, A.S., Almas, A., 1995. Crop uptake and extractability of cadmium in soils naturally high in metals at different pH levels, Commun. Soil Sci. Plant Anal. 26, 2123-2142. https://doi.org/10.1080/00103629509369434
  43. Sparks, D.L., 1996. Methods of soil analysis. Part 3 chemical methods. In: Sparks D.L. (Eds), Soil Science Society of America, American Society of Agronomy, Madison, pp. 1146-1155.
  44. Sposito, G., Lund, L.J., Chang, A.C., 1982. Trace metal chemistry in arid-zone field soils amended with sewage sludge: I. Fractionation of Ni, Cu, Zn, Cd and Pb in solid phases. Soil Sci. Soc. Am. J. 46, 260-264. https://doi.org/10.2136/sssaj1982.03615995004600020009x
  45. Symeonides, C., McRae, S.G., 1977. The assessment of plant-available cadmium in soils, J. Environ. Qual. 6, 120-123.
  46. Thomas, G.W., Hargrove, W.L., 1984. The chemistry of soil acidity. in: Adams, F. (Eds), Soil acidity and liming, Agron. Monogr. p. 12, pp. 3-56, American Society of Agronomy, Madison, USA.
  47. Tyler G., Olsson T., 2001. Plant uptake of major and minor mineral elements as influenced by soil acidity and limin,. Plant Soil 230, 307-321. https://doi.org/10.1023/A:1010314400976
  48. Ure, A.M., Quevauviller, P.H., Muntau, H., Griepink, B., 1993. Speciation of heavy metals in soils and sediments. An account of the improvement and harmonization of extraction techniques undertaken under the auspices of the BCR of the Commission of the European Communities, J. Environ. Anal. Chem. 51, 135-151. https://doi.org/10.1080/03067319308027619
  49. Vig, K., Megharaj, M., Sethunathan, N., Naidu, R., 2003. Bioavailability and toxicity of cadmium to microorganisms and their activities in soil: a review, Adv. Environ. Res. 8, 121-135. https://doi.org/10.1016/S1093-0191(02)00135-1
  50. Weast R.C., Astle M.J., 1978-1979. Handbook of chemistry and physics, 5th ed. CRC Press, Boca Raton, Florida, USA.

Cited by

  1. The Effect of Bottom ash in Reducing Cadmium Phytoavailability in Cadmium-contaminated Soil vol.35, pp.2, 2016, https://doi.org/10.5338/KJEA.2016.35.2.19