DOI QR코드

DOI QR Code

Characterization and gene expression of heat shock protein 90 in marine crab Charybdis japonica following bisphenol A and 4-nonylphenol exposures

  • Park, Kiyun (Department of Fisheries and Ocean Science, Chonnam National University) ;
  • Kwak, Ihn-Sil (Department of Fisheries and Ocean Science, Chonnam National University)
  • Received : 2014.03.27
  • Accepted : 2014.05.07
  • Published : 2014.01.01

Abstract

Objectives Heat shock protein 90 (HSP90) is a highly conserved molecular chaperone important in the maturation of a broad spectrum of protein. In this study, an HSP90 gene was isolated from Asian paddle crab, Charybdis japonica, as a bio-indicator to monitor the marine ecosystem. Methods This work reports the responses of C. japonica HSP90 mRNA expression to cellular stress by endocrine disrupting chemicals (EDCs), such as bisphenol A (BPA) and 4-nonylphenol (NP) using real-time. reverse transcription polymerase chain reaction. Results The deduced amino acid sequence of HSP90 from C. japonica shared a high degree of homology with their homologues in other species. In a phylogenetic analysis, C. japonica HSP90 is evolutionally related with an ortholog of the other crustacean species. The expression of HSP90 gene was almost distributed in all the examined tissues of the C. japonica crab but expression levels varied among the different body parts of the crabs. We examined HSP90 mRNA expression pattern in C. japonica crabs exposed to EDCs for various exposure times. The expression of HSP90 transcripts was significantly increased in C. japonica crabs exposed to BPA and NP at different concentrations for 12, 24, 48 and 96 hours. The mRNA expression of HSP90 gene was significantly induced in a concentration- and time-dependent manner after BPA or NP exposures for 96 hours. Conclusions Taken together, expression analysis of Asian paddle crab HSP90 gene provided useful molecular information about crab responses in stress conditions and potential ways to monitor the EDCs stressors in marine environments.

Keywords

References

  1. Sun S, Chen L, Qin J, Ye J, Qin C, Jiang H, et al. Molecular cloning, characterization and mRNA expression of copper-binding protein hemocyanin subunit in Chinese mitten crab, Eriocheir sinensis. Fish Shellfish Immunol 2012;33(5):1222-1228. https://doi.org/10.1016/j.fsi.2012.09.023
  2. Bohen SP, Kralli A, Yamamoto KR. Hold 'em and fold 'em: chaperones and signal transduction. Science 1995;268(5215):1303-13 04. https://doi.org/10.1126/science.7761850
  3. Li F, Luan W, Zhang C, Zhang J, Wang B, Xie Y, et al. Cloning of cytoplasmic heat shock protein 90 (FcHSP90) from Fenneropenaeus chinensis and its expression response to heat shock and hypoxia. Cell Stress Chaperones 2009;14(2):161-172. https://doi.org/10.1007/s12192-008-0069-6
  4. Chang ES. Reproductive effort and reproductive nutrition of female desert tortoises: essential field methods. Integr Comp Biol 2005; 45(1):43-50. https://doi.org/10.1093/icb/45.1.43
  5. Wu LT, Chu KH. Characterization of heat shock protein 90 in the shrimp Metapenaeus ensis: Evidence for its role in the regulation of vitellogenin synthesis. Mol Reprod Dev 2008;75(5):952-959. https://doi.org/10.1002/mrd.20817
  6. Jiang S, Qiu L, Zhou F, Huang J, Guo Y, Yang K. Molecular cloning and expression analysis of a heat shock protein (Hsp90) gene from black tiger shrimp (Penaeus monodon). Mol Biol Rep 2009;36(1): 127-134. https://doi.org/10.1007/s11033-007-9160-9
  7. Zhang XY, Zhang MZ, Zheng CJ, Liu J, Hu HJ. Identification of two hsp90 genes from the marine crab, Portunus trituberculatus and their specific expression profiles under different environmental conditions. Comp Biochem Physiol C Toxicol Pharmacol 2009; 150(4):465-473. https://doi.org/10.1016/j.cbpc.2009.07.002
  8. Spees JL, Chang SA, Snyder MJ, Chang ES. Osmotic induction of stress-responsive gene expression in the lobster Homarus americanus. Biol Bull 2002;203(3):331-337. https://doi.org/10.2307/1543575
  9. Tsutsui N, Chung JS. A novel putative lipoprotein receptor (CasLpR) in the hemocytes of the blue crab, Callinectes sapidus: cloning and up-regulated expression after the injection of LPS and LTA. Fish Shellfish Immunol 2012;32(3):469-475. https://doi.org/10.1016/j.fsi.2011.11.013
  10. Farcy E, Serpentini A, Fievet B, Lebel JM. Identification of cDNAs encoding HSP70 and HSP90 in the abalone Haliotis tuberculata: Transcriptional induction in response to thermal stress in hemocyte primary culture. Comp Biochem Physiol B Biochem Mol Biol 2007;146(4):540-550. https://doi.org/10.1016/j.cbpb.2006.12.006
  11. Pan F, Zarate JM, Tremblay GC, Bradley TM. Cloning and characterization of salmon hsp90 cDNA: upregulation by thermal and hyperosmotic stress. J Exp Zool 2000;287(3):199-212. https://doi.org/10.1002/1097-010X(20000801)287:3<199::AID-JEZ2>3.0.CO;2-3
  12. Ivanina AV, Taylor C, Sokolova IM. Effects of elevated temperature and cadmium exposure on stress protein response in eastern oysters Crassostrea virginica (Gmelin). Aquat Toxicol 2009;91(3): 245-254. https://doi.org/10.1016/j.aquatox.2008.11.016
  13. Snyder MJ, Girvetz E, Mulder EP. Induction of marine mollusc stress proteins by chemical or physical stress. Arch Environ Contam Toxicol 2001;41(1):22-29. https://doi.org/10.1007/s002440010217
  14. Cho WJ, Cha SJ, Do JW, Choi JY, Lee JY, Jeong CS, et al. A novel 90-kDa stress protein induced in fish cells by fish rhabdovirus infection. Biochem Biophys Res Commun 1997;233(2):316-319. https://doi.org/10.1006/bbrc.1997.6387
  15. Gornati R, Papis E, Rimoldi S, Terova G, Saroglia M, Bernardini G. Rearing density influences the expression of stress-related genes in sea bass (Dicentrarchus labrax, L.). Gene 2004;341:111-118. https://doi.org/10.1016/j.gene.2004.06.020
  16. Roberts RJ, Agius C, Saliba C, Bossier P, Sung YY. Heat shock proteins (chaperones) in fish and shellfish and their potential role in relation to fish health: a review. J Fish Dis 2010;33(10):789-801. https://doi.org/10.1111/j.1365-2761.2010.01183.x
  17. Li J, Han J, Chen P, Chang Z, He Y, Liu P, et al. Cloning of a heat shock protein 90 (HSP90) gene and expression analysis in the ridgetail white prawn Exopalaemon carinicauda. Fish Shellfish Immunol 2012;32(6):1191-1197 https://doi.org/10.1016/j.fsi.2012.03.008
  18. Tapiero H, Ba GN, Tew KD. Estrogens and environmental estrogens. Biomed Pharmacother 2002;56(1):36-44. https://doi.org/10.1016/S0753-3322(01)00155-X
  19. Park K, Kwak IS. Molecular effects of endocrine-disrupting chemicals on the Chironomus riparius estrogen-related receptor gene. Chemosphere 2010;79(9):934-941. https://doi.org/10.1016/j.chemosphere.2010.03.002
  20. Xu H, Yang M, Qiu W, Pan C, Wu M. The impact of endocrinedisrupting chemicals on oxidative stress and innate immune response in zebrafish embryos. Environ Toxicol Chem 2013;32(8): 1793-1799. https://doi.org/10.1002/etc.2245
  21. Wei X, Huang Y, Wong MH, Giesy JP, Wong CK. Assessment of risk to humans of bisphenol A in marine and freshwater fish from Pearl River Delta, China. Chemosphere 2011;85(1):122-128 https://doi.org/10.1016/j.chemosphere.2011.05.038
  22. Santhi VA, Hairin T, Mustafa AM. Simultaneous determination of organochlorine pesticides and bisphenol A in edible marine biota by GC-MS. Chemosphere 2012;86(10):1066-1071. https://doi.org/10.1016/j.chemosphere.2011.11.063
  23. Rocha MJ, Cruzeiro C, Reis M, Rocha E, Pardal M. Determination of seventeen endocrine disruptor compounds and their spatial and seasonal distribution in Ria Formosa Lagoon (Portugal). Environ Monit Assess 2013;185(10):8215-8226. https://doi.org/10.1007/s10661-013-3168-5
  24. Fei YH, Li XD, Li XY. Organic diagenesis in sediment and its impact on the adsorption of bisphenol A and nonylphenol onto marine sediment. Mar Pollut Bull 2011;63(5-12):578-582. https://doi.org/10.1016/j.marpolbul.2010.11.020
  25. US Environmental Protection Agency. Aquatic life ambient water quality criteria-nonylphenol-final; 2005 [cited 2014 Mar 31]. Available from: http://water.epa.gov/scitech/swguidance/standards/upload/2006_05_18_criteria_nonylphenol_final-doc.pdf.
  26. Ahel M, McEvoy J, Giger W. Bioaccumulation of the lipophilic metabolites of nonionic surfactants in freshwater organisms. Environ Pollut 1993;79(3):243-248. https://doi.org/10.1016/0269-7491(93)90096-7
  27. Pan L, Zhang H. Metallothionein, antioxidant enzymes and DNA strand breaks as biomarkers of Cd exposure in a marine crab, Charybdis japonica. Comp Biochem Physiol C Toxicol Pharmacol 2006;144(1):67-75. https://doi.org/10.1016/j.cbpc.2006.06.001
  28. Park K, Kwak IS. Expression of stress response HSP70 gene in Asian paddle crabs, Charybdis japonica, exposure to endocrine disrupting chemicals, bisphenol A (BPA) and 4-nonylphenol (NP). Ocean Sci J 2013;48(2):207-214. https://doi.org/10.1007/s12601-013-0017-y
  29. Mao H, Tan FQ, Wang DH, Zhu JQ, Zhou H, Yang WX. Expression and function analysis of metallothionein in the testis of stone crab Charybdis japonica exposed to cadmium. Aquat Toxicol 2012;124-125:11-21. https://doi.org/10.1016/j.aquatox.2012.07.005
  30. Park K, Bang HW, Park J, Kwak IS. Ecotoxicological multilevelevaluation of the effects of fenbendazole exposure to Chironomus riparius larvae. Chemosphere 2009;77(3):359-367. https://doi.org/10.1016/j.chemosphere.2009.07.019
  31. Cui Z, Liu Y, Luan W, Li Q, Wu D, Wang S. Molecular cloning and characterization of a heat shock protein 70 gene in swimming crab (Portunus trituberculatus). Fish Shellfish Immunol 2010;28(1): 56-64. https://doi.org/10.1016/j.fsi.2009.09.018
  32. Park K, Kwak IS. Characterization of heat shock protein 40 and 90 in Chironomus riparius larvae: effects of di(2-ethylhexyl) phthalate exposure on gene expressions and mouthpart deformities. Chemosphere 2008;74(1):89-95. https://doi.org/10.1016/j.chemosphere.2008.09.041
  33. Liu Y, Cui Z. Complete mitochondrial genome of the Asian paddle crab Charybdis japonica (Crustacea: Decapoda: Portunidae): gene rearrangement of the marine brachyurans and phylogenetic considerations of the decapods. Mol Biol Rep 2010;37(5):2559-2569. https://doi.org/10.1007/s11033-009-9773-2
  34. Martin JW, Davis GE. An updated classification of the recent crustacean; 2001 [cited 2014 Mar 31]. Available from: http://crustacea.nhm.org/pdfs/3839/3839.pdf.
  35. Zhang J, Li J, Liu B, Zhang L, Chen J, Lu M. Genome-wide analysis of the Populus Hsp90 gene family reveals differential expression patterns, localization, and heat stress responses. BMC Genomics 2013;14:532. https://doi.org/10.1186/1471-2164-14-532
  36. Yang L, Zha J, Zhang X, Li W, Li Z, Wang Z. Alterations in mRNA expression of steroid receptors and heat shock proteins in the liver of rare minnow (Grobiocypris rarus) exposed to atrazine and p,p'-DDE. Aquat Toxicol 2010;98(4):381-387. https://doi.org/10.1016/j.aquatox.2010.03.010
  37. Arditsoglou A, Voutsa D. Partitioning of endocrine disrupting compounds in inland waters and wastewaters discharged into the coastal area of Thessaloniki, Northern Greece. Environ Sci Pollut Res Int 2010;17(3):529-538. https://doi.org/10.1007/s11356-009-0172-y
  38. Lu G, Yan Z, Wang Y, Chen W. Assessment of estrogenic contamination and biological effects in Lake Taihu. Ecotoxicology 2011; 20(5):974-981. https://doi.org/10.1007/s10646-011-0660-y
  39. Gong J, Ran Y, Chen D, Yang Y, Zeng EY. Association of endocrinedisrupting chemicals with total organic carbon in riverine water and suspended particulate matter from the Pearl River, China. Environ Toxicol Chem 2012;31(11):2456-2464. https://doi.org/10.1002/etc.1961
  40. Chen X, Li VW, Yu RM, Cheng SH. Choriogenin mRNA as a sensitive molecular biomarker for estrogenic chemicals in developing brackish medaka (Oryzias melastigma). Ecotoxicol Environ Saf 2008;71(1):200-208. https://doi.org/10.1016/j.ecoenv.2007.10.005

Cited by

  1. Effects of crude oil and oil/dispersant mixture on growth and expression of vitellogenin and heat shock protein 90 in blue crab, Callinectes sapidus, juveniles vol.119, pp.2, 2014, https://doi.org/10.1016/j.marpolbul.2017.04.048
  2. Genome reprogramming inSaccharomyces cerevisiaeupon nonylphenol exposure vol.49, pp.10, 2014, https://doi.org/10.1152/physiolgenomics.00034.2017
  3. Inhibition of JAK2/STAT3 Signaling Pathway Suppresses Proliferation of Burkitt’s Lymphoma Raji Cells via Cell Cycle Progression, Apoptosis, and Oxidative Stress by Modulating HSP70 vol.24, pp.None, 2014, https://doi.org/10.12659/msm.910170
  4. Dietary L-Tryptophan Modulates the Hematological Immune and Antibacterial Ability of the Chinese Mitten Crab, Eriocheir sinensis , Under Cheliped Autotomy Stress vol.9, pp.None, 2018, https://doi.org/10.3389/fimmu.2018.02744
  5. Evaluation of 4-nonylphenol and bisphenol A toxicity using multiple molecular biomarkers in the water flea Daphnia magna vol.28, pp.2, 2014, https://doi.org/10.1007/s10646-018-2009-2
  6. Environmental Pollutants Impair Transcriptional Regulation of the Vitellogenin Gene in the Burrowing Mud Crab (Macrophthalmus Japonicus) vol.9, pp.7, 2014, https://doi.org/10.3390/app9071401
  7. Effects of di-(2-ethylhexyl) phthalate on Transcriptional Expression of Cellular Protection-Related HSP60 and HSP67B2 Genes in the Mud Crab Macrophthalmus japonicus vol.10, pp.8, 2014, https://doi.org/10.3390/app10082766
  8. Chronic Exposure to Environmental DDT/DDE in 2 Species of Small Rodents: Measures of Contaminant Load, Immune Dysfunction, and Oxidative Stress vol.40, pp.6, 2014, https://doi.org/10.1002/etc.5007