DOI QR코드

DOI QR Code

FSL-1, a Toll-like Receptor 2/6 Agonist, Induces Expression of Interleukin-$1{\alpha}$ in the Presence of 27-hydroxycholesterol

  • Heo, Weon (Department of Pharmacology, Pusan National University School of Medicine) ;
  • Kim, Sun-Mi (Department of Pharmacology, Pusan National University School of Medicine) ;
  • Eo, Seong-Kug (College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University) ;
  • Rhim, Byung-Yong (Department of Pharmacology, Pusan National University School of Medicine) ;
  • Kim, Koanhoi (Department of Pharmacology, Pusan National University School of Medicine)
  • Received : 2014.06.13
  • Accepted : 2014.08.25
  • Published : 2014.12.30

Abstract

We investigated the question of whether cholesterol catabolite can influence expression of inflammatory cytokines via Toll-like receptors (TLR) in monocytic cells. Treatment of THP-1 monocytic cells with 27-hydroxycholesterol (27OHChol) resulted in induction of gene transcription of TLR6 and elevated level of cell surface TLR6. Addition of FSL-1, a TLR6 agonist, to 27OHChol-treated cells resulted in transcription of the $IL-1{\alpha}$ gene and enhanced secretion of the corresponding gene product. However, cholesterol did not affect TLR6 expression, and addition of FSL-1 to cholesterol-treated cells did not induce expression of $IL-1{\alpha}$. Using pharmacological inhibitors, we investigated molecular mechanisms underlying the expression of TLR6 and $IL-1{\alpha}$. Treatment with Akt inhibitor IV or U0126 resulted in significantly attenuated expression of TLR6 and $IL-1{\alpha}$ induced by 27OHChol and 27OHChol plus FSL-1, respectively. In addition, treatment with LY294002, SB202190, or SP600125 resulted in significantly attenuated secretion of $IL-1{\alpha}$. These results indicate that 27OHChol can induce inflammation by augmentation of TLR6-mediated production of $IL-1{\alpha}$ in monocytic cells via multiple signaling pathways.

Keywords

References

  1. Dinarello CA. Immunological and inflammatory functions of the interleukin-1 family. Annu Rev Immunol. 2009;27:519-550. https://doi.org/10.1146/annurev.immunol.021908.132612
  2. Apte RN, Voronov E. Interleukin-1--a major pleiotropic cytokine in tumor-host interactions. Semin Cancer Biol. 2002;12:277-290. https://doi.org/10.1016/S1044-579X(02)00014-7
  3. Carmi Y, Voronov E, Dotan S, Lahat N, Rahat MA, Fogel M, Huszar M, White MR, Dinarello CA, Apte RN. The role of macrophage-derived IL-1 in induction and maintenance of angiogenesis. J Immunol. 2009;183:4705-4714. https://doi.org/10.4049/jimmunol.0901511
  4. Dinarello CA. Biologic basis for interleukin-1 in disease. Blood. 1996;87:2095-2147.
  5. Frostegård J, Ulfgren AK, Nyberg P, Hedin U, Swedenborg J, Andersson U, Hansson GK. Cytokine expression in advanced human atherosclerotic plaques: dominance of pro-inflammatory (Th1) and macrophage-stimulating cytokines. Atherosclerosis. 1999;145:33-43. https://doi.org/10.1016/S0021-9150(99)00011-8
  6. Chi H, Messas E, Levine RA, Graves DT, Amar S. Interleukin-1 receptor signaling mediates atherosclerosis associated with bacterial exposure and/or a high-fat diet in a murine apolipoprotein E heterozygote model: pharmacotherapeutic implications. Circulation. 2004;110:1678-1685. https://doi.org/10.1161/01.CIR.0000142085.39015.31
  7. Kawai T, Akira S. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity. 2011;34:637-650. https://doi.org/10.1016/j.immuni.2011.05.006
  8. Kawai T, Akira S. TLR signaling. Cell Death Differ. 2006;13: 816-825. https://doi.org/10.1038/sj.cdd.4401850
  9. Curtiss LK, Black AS, Bonnet DJ, Tobias PS. Atherosclerosis induced by endogenous and exogenous toll-like receptor (TLR)1 or TLR6 agonists. J Lipid Res. 2012;53:2126-2132. https://doi.org/10.1194/jlr.M028431
  10. Schroepfer GJ Jr. Oxysterols: modulators of cholesterol metabolism and other processes. Physiol Rev. 2000;80:361-554. https://doi.org/10.1152/physrev.2000.80.1.361
  11. Brown AJ, Jessup W. Oxysterols and atherosclerosis. Atherosclerosis. 1999;142:1-28. https://doi.org/10.1016/S0021-9150(98)00196-8
  12. Garcia-Cruset S, Carpenter KL, Guardiola F, Stein BK, Mitchinson MJ. Oxysterol profiles of normal human arteries, fatty streaks and advanced lesions. Free Radic Res. 2001;35:31-41. https://doi.org/10.1080/10715760100300571
  13. Vejux A, Kahn E, Dumas D, Bessede G, Menetrier F, Athias A, Riedinger JM, Frouin F, Stoltz JF, Ogier-Denis E, Todd- Pokropek A, Lizard G. 7-Ketocholesterol favors lipid accumulation and colocalizes with Nile Red positive cytoplasmic structures formed during 7-ketocholesterol-induced apoptosis: analysis by flow cytometry, FRET biphoton spectral imaging microscopy, and subcellular fractionation. Cytometry A. 2005;64:87-100.
  14. Kim SM, Kim BY, Lee SA, Eo SK, Yun Y, Kim CD, Kim K. 27-Hydroxycholesterol and 7alpha-hydroxycholesterol trigger a sequence of events leading to migration of CCR5-expressing Th1 lymphocytes. Toxicol Appl Pharmacol. 2014;274:462-470. https://doi.org/10.1016/j.taap.2013.12.007
  15. Kim SM, Lee SA, Kim BY, Bae SS, Eo SK, Kim K. 27- Hydroxycholesterol induces recruitment of monocytic cells by enhancing CCL2 production. Biochem Biophys Res Commun. 2013;442:159-164. https://doi.org/10.1016/j.bbrc.2013.11.052
  16. Prunet C, Montange T, Vejux A, Laubriet A, Rohmer JF, Riedinger JM, Athias A, Lemaire-Ewing S, Neel D, Petit JM, Steinmetz E, Brenot R, Gambert P, Lizard G. Multiplexed flow cytometric analyses of pro- and anti-inflammatory cytokines in the culture media of oxysterol-treated human monocytic cells and in the sera of atherosclerotic patients. Cytometry A. 2006; 69:359-373.
  17. Won K, Kim SM, Lee SA, Rhim BY, Eo SK, Kim K. Multiple signaling molecules are involved in expression of CCL2 and IL-1${\beta}$ in response to FSL-1, a Toll-like receptor 6 agonist, in macrophages. Korean J Physiol Pharmacol. 2012;16:447-453. https://doi.org/10.4196/kjpp.2012.16.6.447
  18. Kaminska B. MAPK signalling pathways as molecular targets for anti-inflammatory therapy--from molecular mechanisms to therapeutic benefits. Biochim Biophys Acta. 2005;1754:253-262. https://doi.org/10.1016/j.bbapap.2005.08.017
  19. Farhat K, Riekenberg S, Heine H, Debarry J, Lang R, Mages J, Buwitt-Beckmann U, Roschmann K, Jung G, Wiesmuller KH, Ulmer AJ. Heterodimerization of TLR2 with TLR1 or TLR6 expands the ligand spectrum but does not lead to differential signaling. J Leukoc Biol. 2008;83:692-701. https://doi.org/10.1189/jlb.0807586
  20. Stewart CR, Stuart LM, Wilkinson K, van Gils JM, Deng J, Halle A, Rayner KJ, Boyer L, Zhong R, Frazier WA, Lacy- Hulbert A, El Khoury J, Golenbock DT, Moore KJ. CD36 ligands promote sterile inflammation through assembly of a Toll-like receptor 4 and 6 heterodimer. Nat Immunol. 2010; 11:155-161. https://doi.org/10.1038/ni.1836
  21. Pier GB. Pseudomonas aeruginosa lipopolysaccharide: a major virulence factor, initiator of inflammation and target for effective immunity. Int J Med Microbiol. 2007;297:277-295. https://doi.org/10.1016/j.ijmm.2007.03.012
  22. Royet J, Dziarski R. Peptidoglycan recognition proteins: pleiotropic sensors and effectors of antimicrobial defences. Nat Rev Microbiol. 2007;5:264-277. https://doi.org/10.1038/nrmicro1620
  23. Okusawa T, Fujita M, Nakamura J, Into T, Yasuda M, Yoshimura A, Hara Y, Hasebe A, Golenbock DT, Morita M, Kuroki Y, Ogawa T, Shibata K. Relationship between structures and biological activities of mycoplasmal diacylated lipopeptides and their recognition by toll-like receptors 2 and 6. Infect Immun. 2004;72:1657-1665. https://doi.org/10.1128/IAI.72.3.1657-1665.2004
  24. Qin Z. The use of THP-1 cells as a model for mimicking the function and regulation of monocytes and macrophages in the vasculature. Atherosclerosis. 2012;221:2-11. https://doi.org/10.1016/j.atherosclerosis.2011.09.003
  25. Carpenter KL, Taylor SE, van der Veen C, Williamson BK, Ballantine JA, Mitchinson MJ. Lipids and oxidised lipids in human atherosclerotic lesions at different stages of development. Biochim Biophys Acta. 1995;1256:141-150. https://doi.org/10.1016/0005-2760(94)00247-V
  26. Chi H, Barry SP, Roth RJ, Wu JJ, Jones EA, Bennett AM, Flavell RA. Dynamic regulation of pro- and anti-inflammatory cytokines by MAPK phosphatase 1 (MKP-1) in innate immune responses. Proc Natl Acad Sci U S A. 2006;103:2274-2279. https://doi.org/10.1073/pnas.0510965103
  27. Thobe BM, Frink M, Hildebrand F, Schwacha MG, Hubbard WJ, Choudhry MA, Chaudry IH. The role of MAPK in Kupffer cell toll-like receptor (TLR) 2-, TLR4-, and TLR9-mediated signaling following trauma-hemorrhage. J Cell Physiol. 2007; 210:667-675. https://doi.org/10.1002/jcp.20860
  28. Chen X, Resh MD. Activation of mitogen-activated protein kinase by membrane-targeted Raf chimeras is independent of raft localization. J Biol Chem. 2001;276:34617-34623. https://doi.org/10.1074/jbc.M103995200
  29. El-Kholy W, Macdonald PE, Lin JH, Wang J, Fox JM, Light PE, Wang Q, Tsushima RG, Wheeler MB. The phosphatidylinositol 3-kinase inhibitor LY294002 potently blocks K(V) currents via a direct mechanism. FASEB J. 2003;17:720-722. https://doi.org/10.1096/fj.02-0802fje
  30. Powis G, Bonjouklian R, Berggren MM, Gallegos A, Abraham R, Ashendel C, Zalkow L, Matter WF, Dodge J, Grindey G, et al. Wortmannin, a potent and selective inhibitor of phosphatidylinositol- 3-kinase. Cancer Res. 1994;54:2419-2423.

Cited by

  1. Peptidoglycan Up-Regulates CXCL8 Expression via Multiple Pathways in Monocytes/Macrophages vol.23, pp.6, 2014, https://doi.org/10.4062/biomolther.2015.053
  2. Prednisolone suppresses the immunostimulatory effects of 27-hydroxycholesterol vol.19, pp.3, 2014, https://doi.org/10.3892/etm.2020.8458
  3. Miconazole Suppresses 27-Hydroxycholesterol-induced Inflammation by Regulating Activation of Monocytic Cells to a Proinflammatory Phenotype vol.12, pp.None, 2021, https://doi.org/10.3389/fphar.2021.691019
  4. 27-Hydroxycholesterol induces macrophage gene expression via LXR-dependent and -independent mechanisms vol.25, pp.2, 2014, https://doi.org/10.4196/kjpp.2021.25.2.111