DOI QR코드

DOI QR Code

Identification and Characterization of Aspergillus oryzae Isolated from Soybean Products in Sunchang County

순창군 장류로부터 분리된 황국균의 동정 및 특성

  • Lim, Eunmi (Institute of Sunchang Fermented Soybean Products) ;
  • Lee, Ji Young (Institute of Sunchang Fermented Soybean Products) ;
  • Elgabbar, Mohammed A. Abdo (Department of Pharmaceutical Engineering, Woosuk University) ;
  • Han, Kap-Hoon (Department of Pharmaceutical Engineering, Woosuk University) ;
  • Lee, Bo-Soon (Department of Catering and Culinary Service, Woosuk University) ;
  • Cho, Yong Sik (Fermented Food Science Division, National Academy of Agricultural Science, RDA) ;
  • Kim, Hyoun-Young (Institute of Sunchang Fermented Soybean Products)
  • Received : 2014.11.03
  • Accepted : 2014.12.18
  • Published : 2014.12.30

Abstract

In this study, we attempted to isolate fungi from soybean fermented foods produced in Sunchang County and to identify Aspergillus oryzae from fungal isolates. Ten fungal isolates were identified with ${\beta}$-tubulin gene. According to the sequences of ${\beta}$-tubulin gene, ten fungal isolates were identified as A. oryzae/flavus complex. For further identification of the ten of fungal isolates, omtA gene, one gene of the aflatoxin biosynthesis gene cluster, was sequenced and the sequences were compared with those of A. oryzae and A. flavus strains from the GenBank database. In addition, identification of the ten fungal isolates was further confirmed using the PCR amplicon of norB and cypA intergenic region, in which a deletion was recognized relative to A. flavus and A. parasiticus. The amplicon size of the ten fungal isolate strains was smaller than those of A. flavus and A. parasiticus, but the same as that of the reference A. oryzae strain. These results indicated that the ten isolates should be identified as A. oryzae. The protease activity in rice koji made with 6, 13, 17, 27, 37 and 38 of strain, respectively was twice higher than that in control. The kojis made with nine of the A. oryzae isolates, respectively, did not produce aflatoxin, suggesting that the strains could possibly be used as starters for soybean products.

본 연구에서는 순창지역에서 만들어지는 장류에서 곰팡이를 분리하고 동정하여 보다 안전하고 기능성이 높은 발효제품을 위한 균주를 확보하고자 하였다. 순창지역에서 생산되는 장류 제품으로부터 곰팡이를 분리하여 ${\beta}$-tubulin 유전자 분석 통해 10개의 균주가 Aspergillus oryzae/flavus complex임을 알 수 있었다. 보다 정확한 동정을 위하여 아플라톡신 클러스터 유전자 중에 하나인 omtA의 염기서열을 증폭하여 A. oryzae와 A. flavus 표준 균주의 omtA 서열과 함께 계통 분류한 결과, A. oryzae의 표준 균주와의 유연관계가 높음을 알 수 있었다. 또한 norB-cypA 사이의 염기서열을 증폭한 결과 500 bp이 증폭 산물이 확인되었는데 이는 표준 균주인 A. oryzae의 norB-cypA 사이의 염기서열 증폭 산물과 동일한 크기임을 확인할 수 있었다. A. oryzae로 확인된 10균주를 활용하여 코지를 제조하고 ${\alpha}$-amylase 활성과 protease 활성을 측정하였다. Protease 활성은 6, 13, 17, 27, 37, 그리고 38 균주로 제조된 코지는 대조구(시판되고 있는 종균으로 제작한 코지)보다 2배 정도 높은 protease 활성을 보였으며, ${\alpha}$-amylase 활성은 257~320 U/mL로 측정되었다. 식품안전성을 위한 아플라톡신 분비 확인 결과, 63번 균주로 제조된 코지를 제외한 모든 코지에서 아플라톡신을 만들지 않는 것으로 확인되어, 순창에서 분리된 A. oryzae는 추후 메주 접종균으로 개발할 수 있음을 보여주었다.

Keywords

References

  1. Jung YJ, Chung SH, Lee HK, Chun HS, Hong SB. Isolation and identification of fungi from a Meju contaminated with aflatoxins. J Microbiol Biotechnol 2012;22:1740-8. https://doi.org/10.4014/jmb.1207.07048
  2. Kim JH, Yoo JS, Lee CH, Kim SY, Lee SK. Quality properties of soybean pastes made meju with mold producing protease isolated from traditional meju. J Kor Soc Appl Biol Chem 2006;49:7-14.
  3. Lee CH, Lee SS. Cereal fermentation by fungi. Appl Mycol Biotechnol 2002;2:151-70. https://doi.org/10.1016/S1874-5334(02)80009-0
  4. Lee SS, Park KH, Choi KJ, Won SA. Identification and isolation of Zygomycetous fungi found on maeju, a raw material of Korean traditional soy sauces. Kor J Mycol 1993;21:172-87.
  5. Yoo SK, Kang SM, Noh YS. Quality properties on soy bean pastes made with microorganism isolated from traditional soy bean pastes. Kor J Food Sci Technol 2000;32:1266-70.
  6. Park JS, Lee MY, Kim JS, Lee TS. Compositions of nitrogen compound and amino acid in soybean paste(doenjang) prepared with different microbial sources. Kor J Food Sci Technol 1994;26:609-15.
  7. Song JY, Ahn CW, Kim JK. Flavor components produced by microorganism during fermentation of Korea ordinary soybean paste. Kor J Appl Microbiol Bioeng 1984;12:147-52.
  8. Chang M, Chang HC. Characteristics of bacterial-koji and doenjang (soybean paste) made by using Bacillus subtilis DJI. Kor J Microbiol Biotechnol 2007;35:325-33.
  9. Lee, GG. Soybean paste with good storage stability and flavor, and preparation method for the same. Kor Patent 2004; 10-0457354.
  10. Lee HT, Kim JH, Lee SS. Analysis of microbiological contamination and biogenic amines content in traditional and commercial Doenjang. J Fd Hyg Safety 2009;24:102-9.
  11. Kang KJ, Kim HJ, Lee YG, Jung KH, Han SB, Park SH, Oh HY. Administration of mycotoxins in food in Korea. J Fd Hyg Safety 2010;25:281-8.
  12. Koo MS. Bacillus cereus: An ambusher of food safety. Bull Food Technol 2009;22:587-600.
  13. Lee NH, Jo EJ, Oh SW, Hong SP. Study on the Hurdle technique for the reduction of Bacillus cereus spore in Doenjang and Gochujang. J Kor Soc Food Sci Nutr 2012;41:1842-6. https://doi.org/10.3746/jkfn.2012.41.12.1842
  14. Choi JH, Kim MH, Shon MY, Park SK, Choi SD, Hong H. Production and quality properties of capsule type Meju prepared with Rhizopus oligosporus. Kor J Preserv 2002;9:315-20.
  15. Lee SS, Park KH, Choi KJ, Won SA. Identification and isolation of Zygomycota fungi found on meju, a raw material of Korean traditional soy sources. Kor J Mycol 1993;21:172-87.
  16. Sakurai Y, Shioda H, Komagata K, Kim CS. The physical properties and identification of molds isolated from Korean Meju. J Dongguk Univ. 1984;23:273-90.
  17. Sookkheo B, Sinchaikul S, Phutrakul S, Chen ST. Purification and characterization of the highly thermostable proteases from Bacillus stearmothermphilus TLS33. Protein Expr Purif 2000;20:142-51. https://doi.org/10.1006/prep.2000.1282
  18. Kim HJ, Lee JJ, Cheigh MJ, Choi SY. Amylase, protease, peroxidase and ascorbic acid oxidase activity of Kimchi ingredients. Kor J Food Sci Technol 1998;30:1333-8.
  19. Chang PK, Ehrlich KC, Hua SST. Cladal relatedness among Aspergillus oryzae isolates and Aspergillus flavus S and L morphotype isolates. Int J Food Microbiol 2005;25:172-7.
  20. Glourama, H. Bullerman, LB. Aspergillus flavus and Aspergillus parasticus, aflatoxingenic fungi of concern in foods and feeds-a review. J Food Protec 1995;58:1395-404. https://doi.org/10.4315/0362-028X-58.12.1395
  21. Kurtzman CD, Horn BW, Hesselitine CW. Aspergillus nomius, a new aflatoxin producing species related to Aspergillus flavus and Aspergillus tamari. J Microbiol 1987;53:147-58.
  22. Tominaga M, Lee YH, Hayashi R, Suzuki Y, Yamada O, Sakamoto K, Gotoh K, Akita O. Molecular analysis of an inactive aflatoxin biosynthesis gene cluster in Aspergillus oryzae RIB strain. Appl Environ Microbiol 2006;72:484-90. https://doi.org/10.1128/AEM.72.1.484-490.2006
  23. Ehrlich KC, Chang PK, Yu J, Cotty PJ. Aflatoxin biosynthesis cluster gene cypA is required for G aflatoxin formation. Appl Environ Microbiol 2004;70:6518-624. https://doi.org/10.1128/AEM.70.11.6518-6524.2004
  24. Pildain MB, Vaamonde G, Cabral D. Analysis of population structure of Aspergillus flavus from peanut based on vegetative compatibility, geographic origin, micotoxin and sclerotia production. Int J Syst Evol Microbiol 2008;58:725-35. https://doi.org/10.1099/ijs.0.65123-0

Cited by

  1. Effect of Various Culture Conditions on the Production of Mycotoxin by Aspergillus sp. vol.31, pp.1, 2016, https://doi.org/10.13103/JFHS.2016.31.1.36