DOI QR코드

DOI QR Code

Synthesis of Single-Walled Carbon Nanotubes for Enhancement of Horizontal-Alignment and Density

단일벽 탄소나노튜브의 수평배향도 및 밀도 향상 합성

  • Kwak, Eun-Hye (Advanced Materials Science and Engineering, Graduate School of Kangwon National University) ;
  • Im, Ho-Bin (Department of Nano Applied Engineering, Kangwon National University) ;
  • Jeong, Goo-Hwan (Advanced Materials Science and Engineering, Graduate School of Kangwon National University)
  • 곽은혜 (강원대학교 대학원 신소재공학과) ;
  • 임호빈 (강원대학교 공과대학 나노응용공학과) ;
  • 정구환 (강원대학교 대학원 신소재공학과)
  • Received : 2014.12.11
  • Accepted : 2014.12.23
  • Published : 2014.12.31

Abstract

We present a synthesis of single-walled carbon nanotubes(SWNTs) for enhancement of parallel-alignment and density using chemical vapor deposition with methane feed gas. As-purchased ST-cut quartz substrates were heat-treated and line-patterned by electron-beam lithography in order to grow SWNTs with parallel alignment. We investigated the effects of various synthesis parameters such as catalyst oxidation, reduction, and synthesis conditions in order to enhance both tube density and degree of parallel alignment. The condition of $1{\AA}$ of Fe catalyst film, atmospheric oxidation at $750^{\circ}C$ for 10 min, reduction under 400 Torr for 5 min, and growth at $865^{\circ}C$ under 300 Torr yields $33tubes/10{\mu}m$, which is the highest tube density with parallel alignment. Based on the results of atomic force microscope and Raman spectroscopy, it was found that SWNTs have diameter range of 0.8-2.0 nm. We believe that the present work would contribute to the development of SWNTs-based flexible functional devices.

Keywords

References

  1. S. Iijima, T. Ichihashi, Nature, 363 (1993) 603. https://doi.org/10.1038/363603a0
  2. M. Shulaker, G. Hils, N. Patil, H. Wei, H. Chen, H. Wong, S. Mitra, Nature, 501 (2013) 526. https://doi.org/10.1038/nature12502
  3. J. Valencia, T. Dienel, O. Groning, I. Shorubalko et al., Nature, 512 (2014) 61. https://doi.org/10.1038/nature13607
  4. E. Joselevichi, Nano Res., 2 (2009) 743. https://doi.org/10.1007/s12274-009-9077-9
  5. H. Ago, K. Nakamura, K. Ikeda, N. Uehara, N. Ishigami, M. Tsuji, Chem. Phys. Lett., 408 (2005) 433. https://doi.org/10.1016/j.cplett.2005.04.054
  6. S. Han, X. Liu, C. Zhou, J. Am. Chem. Soc., 127 (2005) 5294. https://doi.org/10.1021/ja042544x
  7. S. J. Kang, C. Kocabas, T. Ozel, M. Shim, N. Pimparkar, M. A. Alam, A. V. Rotkin, J. A. Rogers, Nat. Nanotechnol., 2 (2007) 230. https://doi.org/10.1038/nnano.2007.77
  8. D. Yuan, L. Ding, H. Chu, Y. Feng, T. McNicholas, J. Liu, Nano Lett., 8 (2008) 2576. https://doi.org/10.1021/nl801007r
  9. J. Liu, C. Wang, X. Tu, B. Liu, L. Chen, M. Zheng, C. Zhou, Nat. Commun., 3 (2012) 1199. https://doi.org/10.1038/ncomms2205
  10. J. J. Kim, B. J. Lee, S. H. Lee, G. H. Jeong, Nanotechnol., 23 (2012) 105607. https://doi.org/10.1088/0957-4484/23/10/105607
  11. S. H. Lee, G. H. Jeong, Electron. Mater. Lett., 8 (2012) 5. https://doi.org/10.1007/s13391-011-0930-0
  12. C. Kocabas, S. H. Hur, A. Gaur, M. Meitl, M. Shim, J. Rogers, Small, 11 (2005) 1110.
  13. P. Buffat, J-P. Borel, Phys. Rev. A 13 (1976) 2287. https://doi.org/10.1103/PhysRevA.13.2287
  14. P. M. Ajayan, L. D. Mark, Phys. Rev. Lett., 63 (1989) 279. https://doi.org/10.1103/PhysRevLett.63.279
  15. M. He, H. Jiang, B. Liu, P. V. Fedotov, A. I. Chernov, E. D. Obraztsova, F. Cavalca et al. Scientific Rep., 3 (2013) 14601.
  16. J. Meyer, M. Paillet, T. Michel, A. Moreac, A. Neumann, G. Duesberg, S. Roth, J.-L. Sauvajol, Phys. Rev. Lett., 95 (2005) 217401. https://doi.org/10.1103/PhysRevLett.95.217401
  17. A. Jorio, R. Saito, J. H. Hafner, C. M. Lieber, M, Hunter, T. McClure et al. Phys. Rev. Lett., 86 (2001) 1118. https://doi.org/10.1103/PhysRevLett.86.1118