DOI QR코드

DOI QR Code

Optimization of Door Hinges of a Large Refrigerator

대형 냉장고 도어 힌지의 최적 설계

  • Youn, Seong-Jun (Dept. of Automotive and Mechanical Engineering, Keimyung Univ.) ;
  • Noh, Yoo-Jeong (Dept. of Automotive and Mechanical Engineering, Keimyung Univ.) ;
  • Kim, Seok-Ro (LG electronics, Built-in Division) ;
  • Kim, Ji-Won (LG electronics, Built-in Division)
  • 윤성준 (계명대학교 기계자동차공학과) ;
  • 노유정 (계명대학교 기계자동차공학과) ;
  • 김석로 (LG전자(주) Built-in 사업담당 개발팀) ;
  • 김지원 (LG전자(주) Built-in 사업담당 개발팀)
  • Received : 2013.07.22
  • Accepted : 2013.11.14
  • Published : 2014.01.01

Abstract

Door hinges of large refrigerators are required to ensure that the doors open and close smoothly in addition to supporting door weights and enduring the impact loads due to door opening and closing. However, door hinge design is difficult because of complex hinge mechanisms and sensitive structural safety. In this study, the mechanism satisfying the required spring response, space constraints, and structural strength is optimized, and the volume of the outer frame covering the hinge mechanism is minimized for reducing production costs. The entire design process is automated using the PIDO(Progress Integration and Design Optimization) technique, which achieves an efficient design process. Therefore, the frame mass is reduced to 24%, and the mechanism performance and structural stability are improved.

대형냉장고의 도어 힌지는 냉장고 도어의 개폐 동작을 원활하게 하고, 도어의 하중과 도어개폐로 인한 충격을 견디는 구조 안전성이 요구된다. 하지만, 도어 힌지는 복잡한 힌지 메커니즘과 민감한 구조 안전성으로 인해 설계 시 어려움이 많다. 본 논문에서는 스프링 응답 특성, 공간제약, 구조강도 성능을 만족하는 메커니즘을 설계하고, 메커니즘을 둘러싼 외부 프레임의 부피를 최소화하여 힌지의 생산 단가를 절감하고자 한다. 이를 위해 PIDO(progress integration and design optimization) 기술을 이용하여 모든 설계절차를 자동화함으로써 설계의 효율성을 높이는 성과를 거두었으며, 최적화 결과 목표로 하는 힌지 메커니즘 성능과 구조안정성을 개선하면서 힌지 프레임 질량의 24%를 절감하였다.

Keywords

References

  1. Hwang, J. H. and Shim, J. K., 2011, "The Optimization of Hinge Mechanism for Appliance," Conference Proceeding of the KSPE, pp. 761-762.
  2. Kang, K. B., Lee, K. S., Ma, S. B. and Choi, D. H., 2011, "Design Optimization of Driving Mechanism for Banking Automation Equipment," Conference Proceeding of the KSME, pp. 1143-1148.
  3. Lee, J. H., Heo, S. J., Kim, I. H. and Jeong, J. I., 2009, "Four Bar Link Optimum Design Precess Development of Sequential Approximation Optimization Base," KSAE Annual Conference, pp. 2446-2454.
  4. Robert L. N., 2010, "Kinematics and dynamics of machinery (First Edition in SI units)," McGraw-Hill, Korea.
  5. Park, K. W. and Choi, D. H., 2004, "Optimal Design of a Heat Sink using the Sequential Approximate Optimization Algorithm," Korean Journal of Air-Conditioning and Refrigeration Engineering, Vol. 16, No. 12, pp. 1156-1167.
  6. Lee, G. S., Park, J. M., Choi, B. L., Choi, D. H., Nam, C. H. and Kim, G. H., 2012, "Multidisciplinary Design Optimization of Vehicle Front Suspension System Using PIDO Technology," Transactions of KSAE, Vol. 20, No.6, pp. 1-8. https://doi.org/10.7467/KSAE.2012.20.6.001
  7. Park, C. H., Pyo, B. G., Choi, D. H. and Koo M. S., 2011, "Design Optimization of an Automotive Injection Molded Part for Minimizing Injection Pressure and Preventing Weldlines," Transactions of KSAE, Vol. 19, No. 1, pp. 66-72.

Cited by

  1. Reliability-based design optimization of refrigerator door hinges using PIDO technology vol.16, pp.4, 2015, https://doi.org/10.1007/s12541-015-0095-0