DOI QR코드

DOI QR Code

Biohydrogen production from engineered microalgae Chlamydomonas reinhardtii

  • Kose, Ayse (Ege University Department of Bioengineering) ;
  • Oncel, Suphi S. (Ege University Department of Bioengineering)
  • Received : 2013.07.31
  • Accepted : 2013.12.10
  • Published : 2014.03.25

Abstract

The green microalgae Chlamydomonas reinhardtti is well-known specie in the terms of $H_2$ production by photo fermentation and has been studying for a long time. Although the $H_2$ production yield is promising; there are some bottlenecks to enhance the yield and efficiency to focus on a well-designed, sustainable production and also scaling up for further studies. D1 protein of photosystem II (PSII) plays an important role in photosystem damage repair and related to $H_2$ production. Because Chlamydomonas is the model algae and the genetic basis is well-studied; metabolic engineering tools are intended to use for enhanced production. Mutations are focused on D1 protein which aims long-lasting hydrogen production by blocking the PSII repair system thus $O_2$ sensitive hydrogenases catalysis hydrogen production for a longer period of time under anaerobic and sulfur deprived conditions. Chlamydomonas CC124 as control strain and D1 mutant strains(D240, D239-40 and D240-41)are cultured photomixotrophically at $80{\mu}mol\;photons\;m^{-2}s^{-1}$, by two sides. Cells are grown in TAP medium as aerobic stage for culture growth; in logarithmic phase cells are transferred from aerobic to an anaerobic and sulfur deprived TAP- S medium and 12 mg/L initial chlorophyll content for $H_2$ production which is monitored by the water columns and later detected by Gas Chromatography. Total produced hydrogen was $82{\pm}10$, $180{\pm}20$, $196{\pm}20$, $290{\pm}30mL$ for CC124, D240, D239-40, D240-41, respectively. $H_2$ production rates for mutant strains was $1.3{\pm}0.5mL/L.h$ meanwhile CC124 showed 2-3 fold lower rate as $0.57{\pm}0.2mL/L.h$. Hydrogen production period was $5{\pm}2days$ for CC124 and mutants showed a longer production time for $9{\pm}2days$. It is seen from the results that $H_2$ productions for mutant strains have a significant effect in terms of productivity, yield and production time.

Keywords

References

  1. Antal, T.K., Krendeleva, T.E., Laurinavichene, T.V., Makarova, V.V. Ghirardi, M.L., Rubin, A.B., Tsygankov, A.A. and Seibert, M. (2003), "The dependence of algal $H_2$ production on photosystem II and $O_2$ consumption activities in sulfur-deprived Chlamydomonas reinhardtii cells", Biochim. Biophys. Acta., 1607(2-3), 153-160. https://doi.org/10.1016/j.bbabio.2003.09.008
  2. Das, D. and Veziroglu, N. (2008), "Advances in biological hydrogen production in processes", Int. J. Hydrogen Energ., 33(21), 604-657.
  3. Edelman, M. and Mattoo, A.K. (2008), "D1-protein dynamics in photosystem II: the lingering enigma", Photosynth. Res., 98(1-3), 609-620. https://doi.org/10.1007/s11120-008-9342-x
  4. Edelman, M., Mattoo, A.K. and Marder, J.B. (1984), Three Hats of the Rapidly Metabolized 32 kD Protein Thylakoids, (Ellis, R.T. Ed.), Chloroplast Biogenesis, Cambridge University Press, Cambridge, UK, pp. 283-302.
  5. Faraloni, C. and Torzillo, G. (2010), "Phenotypic characterization and hydrogen production in Chlamydomonas reinhardtii $Q_B$ binding D1 protein mutants under sulphur starvation: changes in chlorophyll fluorescence and pigment composition", J. Phycol., 46(4), 788-799. https://doi.org/10.1111/j.1529-8817.2010.00857.x
  6. Forestier, M., King, P., Zhang, L., Posewitz, M., Schwarzer, S., Happe, T., Ghirardi, M.L. and Seibert, M. (2003), "Expression of two [Fe]-hydrogenases in Chlamydomonas reinhardtii under anaerobic conditions", Eur. J. Biochem, 270(13), 2750-2758. https://doi.org/10.1046/j.1432-1033.2003.03656
  7. Gaffron, H. and Rubin, J. (1942), "Fermentative and photochemical production of hydrogen in algae", J. Gen. Physiol., 26(2), 219-240. https://doi.org/10.1085/jgp.26.2.219
  8. Ghirardi, M.L., Zhang, L., Lee, J.W., Flynn, T., Seibert, M., Greenbaum, E. and Melis, A. (2000), "Microalgae: A green source of renewable $H_2$", Trends Biotechnol., 18(12), 506-511. https://doi.org/10.1016/S0167-7799(00)01511-0
  9. Giannelli, L. and Torzillo, G. (2012), "Hydrogen production with the microalga Chlamydomonas reinhardtii grown in a compact tubular photobioreactor immersed in a scattering light nanoparticle suspension", Int. J. Hydrogen Energ., 37(22), 16951-16961. https://doi.org/10.1016/j.ijhydene.2012.08.103
  10. Giardi, M.T., Rea, G., Lambreva, M.D., Antonacci, A., Pastorelli, S., Bertalan, I., Johanningmeier, U. and Mattoo A.K. (2013), "Mutations of photosystem II D1 protein that empower efficient phenotypes of Chlamydomonas reinhardtii under extreme enviromnent in space", PLoS One, 8(5), e64352. https://doi.org/10.1371/journal.pone.0064352
  11. Hallenbeck, P.C. and Benemann, J.R. (2002), "Biological hydrogen production; fundamentals and limiting processes", Int. J. Hydrogen Energ., 27(11-12), 1185-1193. https://doi.org/10.1016/S0360-3199(02)00131-3
  12. Happe, T., Hemschemeier, A., Winkler, M. and Kaminski, A. (2002), "Hydrogenases in green algae: Do they save the algae's life and solve our energy problems?", Trends. Plant Sci., 7(6), 246-250. https://doi.org/10.1016/S1360-1385(02)02274-4
  13. Hoshino, T., Daniel, J.J. and Joel, L. (2012), "Design of new strategy for green algal photo-hydrogen production: Spectral-selective photosystern I activation and photosystem II deactivation", Bioresour. Technol., 120, 233-240. https://doi.org/10.1016/j.biortech.2012.06.011
  14. Kettunen, R., Tyystjarvi, E. and Aro, E.M. (1996), "Degradation pattern of photosystem II reaction center protein D1 in intact leaves", Plant Physiol., 111(4), 1183-1190. https://doi.org/10.1104/pp.111.4.1183
  15. Kima, J.P., Kang, C.D., Park, T.Y., Kim, M.S. and Sim, S.J. (2006), "Enhanced hydrogen production by controlling light intensity in sulphur deprived Chlamydomonas reinhardtii culture", Int. J. Hydrogen Energ., 31(11), 1585-1590. https://doi.org/10.1016/j.ijhydene.2006.06.026
  16. Kosourov, S., Makarova, V., Fedorov, A.S., Tsygankov, A., Seibert, M. and Ghirardi, M.L. (2005), "The effect of sulfur re-addition on $H_2$ photoproduction by sulfur-deprived green algae", Photosynth. Res., 85(3), 295-305. https://doi.org/10.1007/s11120-005-5105-0
  17. Kosourov, S., Patrusheva, E., Ghirardi, M.L., Seibert, M. and Tsygankov, A. (2002), "A comparison of hydrogen photoproduction by sulfur-deprived Chlamydomonas reinhardtiiunder different growth condition", J. Biotechnol., 128(4), 776-787.
  18. Laurinavichene, T., Iolstygina, I. and Isygankov, A. (2004), "The effect of light intensity on hydrogen production by sulfur-deprived Chlamydomonas reinhardtii", J. Biotechnol., 114 (1-2),143-151. https://doi.org/10.1016/j.jbiotec.2004.05.012
  19. Laurinavichene, T.V., Fedorov, A.S., Ghirardi, M.L., Seibert, M. and Tsygankov, A.A. (2006), "Demonstration of sustained hydrogen photoproduction by immobilized, sulfurdeprived Chlamydomonas reinhardtii cellse", Int. J. Hydrogen Energ., 31(5), 659-667. https://doi.org/10.1016/j.ijhydene.2005.05.002
  20. Levin, D.E., Pitt, L. and Love, M. (2004), "Biohydrogen production: Prospects and limitations to practical application", Int. J. Hydrogen Energ., 29(2), 173-185. https://doi.org/10.1016/S0360-3199(03)00094-6
  21. Mata T.M., Martins A.A. and Caetano N.S. (2010), "Microalgae for biodiesel production and other applications: A review", Renew. Sust. Energ. Rev., 14(1), 217-32. https://doi.org/10.1016/j.rser.2009.07.020
  22. Melis, A. (2002), "Green alga hydrogen production: progress, challenges and Prospects", Int. J. Hydrogen Energ., 27, 1217-1228. https://doi.org/10.1016/S0360-3199(02)00110-6
  23. Melis, A. and Happe, T. (2001) "Hydrogen production: Green algae as a source of energy", Plant Physiol., 127(3), 740-748. https://doi.org/10.1104/pp.010498
  24. Melis, L., Zhang, M., Forestier, M.L. and Ghirardi, M.S. (2000), "Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii", Plant Physiol., 122(1), 127-136. https://doi.org/10.1104/pp.122.1.127
  25. Oncel, S.S. (2013) "Microalgae for a macroenergy world", Renew. Sust. Energ. Rev., 26, 241-264. https://doi.org/10.1016/j.rser.2013.05.059
  26. Oncel, S. and Kose, A. (2014), "Comprasion of tubular and panel type photobioreactors for biohydrogen production utilizing Chlamydomonas reinhardtii considering mixing time and light intensity", Bioresource Technol., 151, 265-270. https://doi.org/10.1016/j.biortech.2013.10.076
  27. Oncel, S. and Sabankay, M. (2012), "Microalgal biohydrogen production considering light energy and mixing time as the key features for scale up", Bioresource Technol., 121, 228-234. https://doi.org/10.1016/j.biortech.2012.06.079
  28. Oncel, S. and Sukan, F.V. (2011), "Effect of light intensity and the light: dark cycles on the long term hydrogen production of Chlamydomonas reinhardtiiby batch cultures", Biomass. Bioenerg, 35(3), 1066-1074. https://doi.org/10.1016/j.biombioe.2010.11.017
  29. Oncel, S. and Vardar-Sukan, F. (2009), "Photo-bioproduction of hydrogen by Chlamydomonas reinhardtii using a semi-continuous process regime", Int. J. hydrogen energ., 34(18), 7592-7602. https://doi.org/10.1016/j.ijhydene.2009.07.027
  30. Parmar, A., Singh, N.K., Pandey, A., Gnansounou, E. and Madamwar, D. (2011), "Cyanobacteria and microalgae: A positive prospect for biofuel", Bioresource Technol., 102(22), 10163-10172. https://doi.org/10.1016/j.biortech.2011.08.030
  31. Scoma, A., Giannelli, L., Faraloni, C. and Torzillo, G. (2012), "Outdoor $H_2$ production in 50-L tubular photobioreactor by means of a sulfur-deprived cultur of the microalgae Chlamydomonas reinhardtii", J. Biotechnol., 157(4), 620-627. https://doi.org/10.1016/j.jbiotec.2011.06.040
  32. Scoma, A., Krawietz, D., Faraloni, C., Gianelli, L., Happe, T. and Torzillo, G. (2012), "Sustained $H_2$ production in a Chlamydomonas reinhardtii D1 protein mutant", J. Biotechnol., 157(4), 613-619. https://doi.org/10.1016/j.jbiotec.2011.06.019
  33. Specht, E., Miyake-Stoner, S. and Mayfield, S. (2010), "Micro-algae come of age as a platform for recombinant protein production", Biotechnol. Lett., 32(10), 1373-1383. https://doi.org/10.1007/s10529-010-0326-5
  34. Torzillo, G., Scoma, A., Faraloni, C., Ena, A. and Johanningmeier, U. (2009), "Increased hydrogen photoproduction by means of a sulfur deprived Chlamydomonas reinhardtii D1 protein mutant", Int. J. Hydrogen Energ, 34(10), 4529-4536. https://doi.org/10.1016/j.ijhydene.2008.07.093
  35. Tsygankov, A.A., Kosourov, S.N., Tolstygina, I.V., Ghirardi, M.L. and Seibert, M. (2006), "Hydrogen production by sulfur-deprived Chlamydomonas reinhardtii under photoautotrophic conditions", Int. J. Hydrogen Energ., 31(11), 1574-1584. https://doi.org/10.1016/j.ijhydene.2006.06.024
  36. Zhang, L., Happe, T. and Melis, A. (2002), "Biochemical and morphological character-ization of sulfur-deprived and H2-producing Chlamydomonas reinhardtii (green alga)", Planta., 214(4), 552-561. https://doi.org/10.1007/s004250100660

Cited by

  1. Biohydrogen production from model microalgae Chlamydomonas reinhardtii: A simulation of environmental conditions for outdoor experiments vol.40, pp.24, 2015, https://doi.org/10.1016/j.ijhydene.2014.12.121
  2. Prioritizing the locations for hydrogen production using a hybrid wind-solar system: A case study vol.5, pp.2, 2017, https://doi.org/10.12989/eri.2017.5.2.107
  3. Localization of solar-hydrogen power plants in the province of Kerman, Iran vol.5, pp.2, 2014, https://doi.org/10.12989/eri.2017.5.2.179