DOI QR코드

DOI QR Code

Retrieval of Thermal Tropopause Height using Temperature Profile Derived from AMSU-A of Aqua Satellite and its Application

Aqua 위성 AMSU-A 고도별 온도자료를 이용한 열적 대류권계면 고도 산출 및 활용

  • Cho, Young-Jun (Forecast Research Laboratory, National Institute of Meteorological Research, KMA) ;
  • Shin, Dong-Bin (Dept. of Atmospheric Sciences, Yonsei University) ;
  • Kwon, Tae-Yong (Dept. of Atmospheric and Environmental Sciences, Gangneung-Wonju National University) ;
  • Ha, Jong-Chul (Forecast Research Laboratory, National Institute of Meteorological Research, KMA) ;
  • Cho, Chun-Ho (Forecast Research Laboratory, National Institute of Meteorological Research, KMA)
  • 조영준 (국립기상연구소 예보연구과) ;
  • 신동빈 (연세대학교 대기과학과) ;
  • 권태영 (강릉원주대학교 대기환경과학과) ;
  • 하종철 (국립기상연구소 예보연구과) ;
  • 조천호 (국립기상연구소 예보연구과)
  • Received : 2014.11.05
  • Accepted : 2014.12.11
  • Published : 2014.12.31

Abstract

In this study, thermal tropopause height defined from WMO (World Meteorological Organization) using temperature profile derived from Advance Microwave Sounding Unit-A (AMSU-A; hereafter named AMSU) onboard EOS (Earth Observing System) Aqua satellite is retrieved. The temperature profile of AMSU was validated by comparison with the radiosonde data observed at Osan weather station. The validation in the upper atmosphere from 500 to 100 hPa pressure level showed that correlation coefficients were in the range of 0.85~0.97 and the bias was less than 1 K with Root Mean Square Error (RMSE) of ~3 K. Thermal tropopause height was retrieved by using AMSU temperature profile. The bias and RMSE were found to be -5~ -37 hPa and 45~67 hPa, respectively. Correlation coefficients were in the range of 0.5 to 0.7. We also analyzed the change of tropopause height and temperature in middle troposphere in the extreme heavy rain event (23 October, 2003) associated with tropopause folding. As a result, the distinct descent of tropopause height and temperature decrease of ~8 K at 500 hPa altitude were observed at the hour that maximum precipitation and maximum wind speed occurred. These results were consistent with ERA (ECMWF Reanalysis)-Interim data (potential vorticity, temperature) in time and space.

Keywords

References

  1. Bell, G. D., and L. F. Bosart, 1993: A case study diagnosis of the Formation of an upper-Level cutoff cyclonic circulation over the Eastern United States. Mon. Wea. Rev., 121, 1635-1655. https://doi.org/10.1175/1520-0493(1993)121<1635:ACSDOT>2.0.CO;2
  2. Bethan, S., G. Vaughan, and S. J. Reid, 1996: A comparison of ozone and thermal tropopause heights and the impact of tropopause definition on quantifying the ozone content of the troposphere. Quart. J. Roy. Meteor. Soc., 122, 929-944. https://doi.org/10.1002/qj.49712253207
  3. Choi, W.-K., and H. Kim, 2010: Annual variation and trends of the Arctic tropopause pressure. Atmosphere, 20, 355-366 (in Korean with English abstract).
  4. Danielsen, E. F., 1968: Stratospheric-tropospheric exchange based on radioactivity, ozone and potential vorticity. J. Atmos. Sci., 25, 502-518. https://doi.org/10.1175/1520-0469(1968)025<0502:STEBOR>2.0.CO;2
  5. Divakarla, M. G., C. D. Barnet, M. D. Goldberg, L. M. McMillin, E. Maddy, W. Wolf, L. Zhou, and X. Liu, 2006: Validation of atmospheric infrared sounder temperature and water vapor retrievals with matched radiosonde measurements and forecasts. J. Geophys. Res., 111, D09S15, doi:10.1029/2005JD006116.
  6. Fetzer, E. J., and Coauthors, 2000: AIRS science team validation plan. [Available online at http://eospso.gsfc.nasa.gov/sites/default/files/atbd/AIRSValP2doc.pdf].
  7. Fetzer, E. J., and Coauthors, 2003: AIRS/AMSU/HSB Validation. IEEE TRANS. on Geosci. & Remote Sens., 41, 418-431. https://doi.org/10.1109/TGRS.2002.808293
  8. Gage, K. S., and J. L. Green, 1982: An objective method for the determination of tropopause height from VHF Radar observation. J. Appl. Meteorol., 21, 1150-1154. https://doi.org/10.1175/1520-0450(1982)021<1150:AOMFTD>2.0.CO;2
  9. Gettelman, A., and Coauthors, 2004: Validation of Aqua satellite data in the upper troposphere and lower stratosphere with in situ aircraft instruments. Geophys. Res. Lett., 31, L22107, doi:10.1029/2004GL020730.
  10. Goldberg, M. D., D. S. Crosby, and L. Zhou, 2001: The limb adjustment of AMSU-A observations: Methodology and validation. J. Appl. Meteorol., 40, 70-83. https://doi.org/10.1175/1520-0450(2001)040<0070:TLAOAA>2.0.CO;2
  11. Hoerling, M. P., T. K. Schaack, and A. J. Lenzen, 1991: Global objective tropopause analysis. Mon. Wea. Rev., 119, 1816-1831. https://doi.org/10.1175/1520-0493(1991)119<1816:GOTA>2.0.CO;2
  12. Hoinka, K. P., 1998: Statistics of the global tropopause pressure. Mon. Wea. Rev., 126, 3303-3325. https://doi.org/10.1175/1520-0493(1998)126<3303:SOTGTP>2.0.CO;2
  13. Holton, J. R., P. H. Haynes, M. E. McIntyre, A. R. Douglass, R. B. Rood, and L. Pfister, 1995: Stratosphere-troposphere exchange. Rev. Geophys., 33, 403-439. https://doi.org/10.1029/95RG02097
  14. Hou, A. Y., R. K. Kakar, S. Neeck, A. A. Azarbarzin, C. D. Kummerow, M. Kojima, R. Oki, K. Nakamura, and T. Iguchi, 2014: The Global Precipitation Measurement (GPM) mission. Bull. Amer. Meteor. Soc., 95, 701-722. https://doi.org/10.1175/BAMS-D-13-00164.1
  15. Kim, I.-H., T.-Y. Kwon, and D.-R. Kim, 2012: MTSAT satellite image features on the severe storm events in Yeongdong region. Atmosphere, 22, 29-45 (in Korean with English abstract). https://doi.org/10.14191/Atmos.2012.22.1.029
  16. Kim, J.-H., and H.-Y. Chun, 2010: A numerical study of Clear-Air Turbulence (CAT) encounters over South Korea on 2 April 2007. J. Appl. Meteor. Climatol, 49, 2381-2403. https://doi.org/10.1175/2010JAMC2449.1
  17. Kim, K.-H., Y.-H. Kim, D.-W. Kim, and D.-E. Chang, 2011: The performance assessment of special observation program (ProbeX-2009) and the analysis on the characteristics of precipitation at the Ulleungdo. Atmosphere, 21, 185-196 (in Korean with English abstract).
  18. Kuo, Y.-H., T.-K. Wee, S. Sokolovskiy, C. Rocken, W. Schreiner, D. Hunt, and R. A. Anthes, 2004: Inversion and error estimation of GPS radio occultation data. J. Meteor. Soc. Japan, 82, 507-531. https://doi.org/10.2151/jmsj.2004.507
  19. Lee, H.-R., K.-E. Kim, J.-M. Yoo, and K.-D. Min, 2001: A study on a severe winter weather occurred in the Korean Peninsula by tropopause undulation. J. Korean Meteor. Soc., 37, 195-224 (in Korean with English abstract).
  20. Lee, H.-Y., H.-Y. Ko, K.-E. Kim, and I.-H. Yoon, 2010: An analysis of characteristics of heavy rainfall events over Yeondong region associated with tropopause folding. J. Korean Earth Soc., 31, 354-369 (in Korean with English abstract). https://doi.org/10.5467/JKESS.2010.31.4.354
  21. Nastrom, G. D., J. L. Green, M. R. Peterson, and K. S. Gage, 1989: Tropopause folding and the variability of the tropopause height as seen by the flatland VHF Radar. J. Appl. Meteorol., 28, 1271-1281. https://doi.org/10.1175/1520-0450(1989)028<1271:TFATVO>2.0.CO;2
  22. Olsen, E. T., 2013: AIRS/AMSU/HSB Version 6 L2 standard pressure level. [Available online at http://disc.sci.gsfc.nasa.gov/AIRS/documentation/v6_docs/v6releasedoc-1/V6_L2_Standard_Pressure_Levels.pdf].
  23. Reed, R. J., 1955: A study of a characteristic type of upperlevel frontogenesis. J. Meteor., 12, 226-237. https://doi.org/10.1175/1520-0469(1955)012<0226:ASOACT>2.0.CO;2
  24. Santer, B. D., and Coauthors, 2003: Contribution of anthropogenic and natural forcing to recent tropopause height changes. Science, 301, 479-483. https://doi.org/10.1126/science.1084123
  25. Schmidt, T., J. Wickert, G. Beyerle, and C. Reigber, 2004: Tropical tropopause parameters derived from GPS radio occultation measurements with CHAMP. J. Geophys. Res., 109, D13105, doi:10.1029/2004JD004566.
  26. Schmidt, T., S. Heise, J. Wickert, G. Beyerle, and C. Reigber, 2005: GPS radio occultation with CHAMP and SACC: global monitoring of thermal tropopause paramerters. Atmos. Chem. Phys., 5, 1473-1488. https://doi.org/10.5194/acp-5-1473-2005
  27. Son, S.-W., L. M. Polvani, D. W. Waugh, T. Birner, H. Akiyoshi, R. R. Garcia, A. Gettelman, D. A. Plummer, and E. Rozanov, 2009: The impact of stratospheric ozone recovery on tropopause height trends. J. Climate, 22, 429-445. https://doi.org/10.1175/2008JCLI2215.1
  28. Tobin, D. C., and Coauthors, 2006: Atmospheric radiation measurement site atmospheric state best estimates for Atmospheric Infrared Sounder temperature and water vapor retrieval validation. J. Geophys. Res., 111, D09S14, doi:10.1029/2005JD006103.
  29. Tomikawa, Y., Y. Nishimura, and T. Yamanouchi, 2009: Characteristics of tropopause and tropopause inversion layer in the polar region. Sci. Online Lett. Atmos., 5, 141-144.
  30. Yoo, J.-M., Y.-I. Won, Y.-J. Cho, M.-J. Jeong, D.-B. Shin, S.-J. Lee, Y.-R. Lee, S.-M. Oh, and S.-J. Ban, 2011: Temperature trend in the skin/surface, mid-troposphere and low stratosphere near Korea from satellite and ground measurements. Asia-Pac. J. Atmos. Sci., 47, 439-455. https://doi.org/10.1007/s13143-011-0029-4
  31. WMO, 1957: Meteorology - A three dimensional science. WMO Bull., 6, 134-138.
  32. WMO, 1986: Atmospheric ozone 1985: Global ozone research and monitoring report. WMO Rep. 16, 392 pp.
  33. Zangl, G., and K. P. Hoinka, 2001: The tropopause in the polar region. J. Climate, 14, 3117-3139. https://doi.org/10.1175/1520-0442(2001)014<3117:TTITPR>2.0.CO;2