DOI QR코드

DOI QR Code

Relationship between Distribution of the Dominant Phytoplankton Species and Water Temperature in the Nakdong River, Korea

낙동강의 식물플랑크톤 우점종의 분포특성 및 수온과의 상관성

  • Yu, Jae Jeong (Nakdong River Water Environmental Research Center, National Institute of Environmenl Research) ;
  • Lee, Hye Jin (Nakdong River Water Environmental Research Center, National Institute of Environmenl Research) ;
  • Lee, Kyung Lak (Nakdong River Water Environmental Research Center, National Institute of Environmenl Research) ;
  • Lyu, Heuy Seong (Nakdong River Water Environmental Research Center, National Institute of Environmenl Research) ;
  • Whang, Jeong Wha (Nakdong River Water Environmental Research Center, National Institute of Environmenl Research) ;
  • Shin, La Young (Nakdong River Water Environmental Research Center, National Institute of Environmenl Research) ;
  • Chen, Se Uk (Nakdong River Water Environmental Research Center, National Institute of Environmenl Research)
  • 유재정 (국립환경과학원 낙동강물환경연구소) ;
  • 이혜진 (국립환경과학원 낙동강물환경연구소) ;
  • 이경락 (국립환경과학원 낙동강물환경연구소) ;
  • 류희성 (국립환경과학원 낙동강물환경연구소) ;
  • 황정화 (국립환경과학원 낙동강물환경연구소) ;
  • 신라영 (국립환경과학원 낙동강물환경연구소) ;
  • 천세억 (국립환경과학원 낙동강물환경연구소)
  • Received : 2014.06.27
  • Accepted : 2014.11.25
  • Published : 2014.12.31

Abstract

The construction of eight large weirs in the Nakdong River, Korea, caused a decrease in the water flow velocity and several physical changes to the water environment. Here, changes in phyto- and zooplankton communities and water quality in the areas near the eight weirs were investigated from 2011 to 2013, and relationships between phytoplankton abundances and environmental factors were analyzed. Special emphasis was given to the succession patterns in algal abundance based on temperature fluctuations. At the eight weirs, 24 dominant species were found. The most abundant phytoplankton species was Stephanodiscus sp. (39.4% of dominant frequency). Cyanobacteria of the genus Microcystis dominated during the summer, with an dominant frequency of 8.5% and cell abundance ratio of 36.6%. Significant correlations were observed between temperature and abundance of eight of the main dominant species; seven species showed positive correlations with temperature. Stephanodiscus sp., however, showed a negative correlation with temperature (r=-0.26, p<0.01). In addition, this species showed a significant negative correlation with the dominant algal species-Aulacoseira granulata and Aphanizomenon flos-aquae, with the zooplankton Copepoda and with Cladocera. On the contrary, seven other dominant species of algae showed significant positive correlations with zooplankton. Thus, we showed that the seasonal succession of plankton communities in the Nakdong River was related to the water temperature changes.

본 연구에서는 낙동강의 상주보에서부터 합천창녕보까지의 8개에 보에 대해 2011년부터 2013년 까지의 수온, 적산일사량, 영양염 농도, 식물플랑크톤 군집분포, 기타 수질조사 결과를 이용하여 식물플랑크톤 우점종의 천이특성과 수온과의 상관성, 우점종 상호 간의 영향 등에 대해 고찰하였다. 8개 보 단위의 별 우점종 평가에 있어 총 25개 종이 우점하고 있었다. 봄철에 대발생하는 Stephanodiscus sp.는 우점빈도가 39.4%로서 가장 높았으며 현존량 우점율은 58.6%였다. 여름철에 대발생하는 Microcystis sp.의 우점빈도는 8.5%였고 현존량 우점율은 36.6%였다. 8개 조사지점의 수온차이는 평균 $1.83^{\circ}C$로서 지점별 차이는 통계적으로 유의하지 않았다. 분석 대상 우점종 중 수온과 음의 상관성을 보인 것은 Stephanodiscus sp. 1개 종(r=-0.26, p<0.01)이었으며 나머지 7개 종은 양의 상관성이 유의하게 나타냈다(r=0.08~0.28). Stephanodiscus sp.는 $2{\sim}18^{\circ}C$의 수온범위에서 높은 개체밀도를 보였고 $2^{\circ}C$ 이하에서는 $2,000cells\;ml^{-1}$ 이하의 적은 개체밀도를 보였다. Stephanodiscus sp.의 봄철 수화현상 다음에 우점하는 종은 Aulacoseira granulata, Fragilaria crotonensis, Cyclotella sp. 등이었으며, Microcystis sp.는 Stephanodiscus sp.의 개체밀도가 감소되는 $18^{\circ}C$ 정도에서 개체수 증가속도가 높아졌으며, 수온이 $25^{\circ}C$ 이상이 되면 $10,000cells\;mL^{-1}$를 초과하기 시작하고 $28^{\circ}C$ 이상에서부터 현저하게 증가하여 수화현상이 나타났다. 낙동강에서 광범위한 수온 영역에 적응하고 있는 종은 Cyclotella sp., Aulacoseira granulata, Fragilaria crotonensis 등이었다. 적산일사량과 유의한 상관성을 보인 것은 Aulacoseira granulata 1개 종이었다. Stephanodiscus sp.는 분석대상 우점종 중에 Aulacoseira granulata 및 Aphanizomenon flos-aquae 종과의 상관계수가 각각 -0.12 및 -0.09로서(p<0.05) 음의 상관성이 유의하게 나타났다. Stephanodiscus sp.는 동물성플랑크톤의 요각류 (r=-0.11, p<0.01), 지각류 (r=-0.09, p<0.05) 등과 음이 상관성이 유의하게 나타났다. 따라서 Stephanodiscus sp.는 낙동강에서 동물성플랑크톤의 중요한 섭식원이 되고 있을 것으로 추정된다. 여름철 최대 우점종인 Microcystis sp.는 음의 상관성을 나타낸 다른 우점종은 없었다.

Keywords

References

  1. Boyce, D.G., M.R. Lewis and B. Worm. 2010. Global phytoplankton decline over the past century. Nature 466: 591-596. https://doi.org/10.1038/nature09268
  2. Burgmer, T. and H. Hillebrand. 2011. Temperature mean and variance alter phytoplankton biomass and biodiversity in a long-term microcosm experiment. Oikos 120(6): 922-933. https://doi.org/10.1111/j.1600-0706.2010.19301.x
  3. Chang, C.W., F.K. Shiah, J.T. Wu, T. Miki and C.H. Hsieh. 2014. The role of food availability and phytoplankton community dynamics in the seasonal succession of zooplankton community in a subtropical reservoir. Limnologica 46: 131-138. https://doi.org/10.1016/j.limno.2014.01.002
  4. Christopher, T.F., H. Hillebrand, J. Adam, W. Heathcote, H. Stanley and A. Downing. 2014. Cyanobacteria dominance influences resource use efficiency and community turnover in phytoplankton and zooplankton communities. Ecology Letters 17: 464-474. https://doi.org/10.1111/ele.12246
  5. Chung, J., H.S. Kim and Y.J. Kim. 1994. Structure of phytoplankton community in the Nakdong River Estuary Dam. Korean Journal of Limnology 27(1): 33-46.
  6. Heisler, J.P., J. Gilbert, J. Burkholder, D. Anderson, W. Cochlan, W. Dennison, Q. Dortch, C.J. Gobler, C. Heil, E. Humphries, A. Lewitus, R. Magnien, H. Marshall, K. Sellner, D. Stockwell and M. Suddleson. 2008. Eutrophication and harmful algal blooms: ascientific consensus. Harmful Algae 8: 3-13. https://doi.org/10.1016/j.hal.2008.08.006
  7. IPCC. 2007. A report of working group 1 of the intergovernmental panel on climate change. Summary for policymakers and technical summary.
  8. Jing, Z., X. Ping, T. Min, G. Longgen, C. Jun, L. Li, X.Z. Zhang and L. Zhang. 2013. The impanct of fish predation and cyanobacteria on zooplankton size structure in 96 subtrophical lakes. PLOS ONE 8(10): 1-15.
  9. Joung, S.H., H.K. Park and S.H. Lee. 2013. Effect of climate change for diatom bloom at winter and spring season in Mulgeum station of the Nakdong River, South Korea. Korean Society of Water Environment 29(2): 155-164.
  10. Karl, E.H., R.T. Janes, T.L. East and V.H. Smith. 2003. N:P ratios, light limitation, and cyanobacteral dominance in a subtropical lake impacted by non-point source nutrient pollution. Environmental Pollution 122: 379-390. https://doi.org/10.1016/S0269-7491(02)00304-4
  11. Monica, T., F. Corradini, A. Boscaini and D. Calliari. 2007. Weather-driven ecology of planktonic diatoms in Lake Tovel (Trentino, Italy). Hydrobiologia 578: 147-156. https://doi.org/10.1007/s10750-006-0441-4
  12. Moon, S.G., J.M. Chung and C.M. Choi. 2001. The sturucture of phytoplankton community in the middle-lower part of the Nakdong River. Korean Environmental Sciences Sociey 10(1): 41-45.
  13. Moran, X.A.G., L.U. Angel, C.D. Alejandra and W.K.W. Li. 2011. Increasing importance of small phytoplankton in a warmer ocean. Global Change Biology 16(3): 1137-1144.
  14. Nilssen, J.P. 1984. Trophic lakes-functional ecology and future development: the need for a process-orientated approach. Hydrobiologia 113: 231-242. https://doi.org/10.1007/BF00026611
  15. Orr, P.T., G.J. Jones and G.B. Douglas. 2004. Response of cultured Microcystis aeruginosa from the Swan river Australia, to elevated salt concentration and conseqquences for bloom and toxin management in estuaries. Marine Freshwater Resources 55: 277-283. https://doi.org/10.1071/MF03164
  16. Qiu, B.S. and K.S. Gao. 2002. Effects of $CO_2$ enrichment on the bloom-forming cyanobacterium Microxystis aerugisnosa (Cyanophyceae): physiological responses and relationships with the availability of dissolved inorganic carbon. Journal of Phycology 38: 721-729. https://doi.org/10.1046/j.1529-8817.2002.01180.x
  17. Raben, J.A. and R.J. Geider. 1988. Temperature and algal growth. New Phytologist 110: 441-461. https://doi.org/10.1111/j.1469-8137.1988.tb00282.x
  18. Reynolds, C.S. 1987. The response of phytoplankton communities to changing lake environments. Aquatic Sciences 49: 220-236.
  19. Robarts, R.D. and T. Zohary. 1987. Temperature effects on photosynthetic capacity, respiration, and growth rates of bloom-forming cyanobacteria, New Zeal. Journal of Marine & Freshwater Research 21: 391-399. https://doi.org/10.1080/00288330.1987.9516235
  20. Son, H.J. 2013. Changes of dominant phytoplankton community in downstream of the Nakdong river: from 2002 to 2012. Korean Society of Environmental Engineers 35(4): 289-293. https://doi.org/10.4491/KSEE.2013.35.4.289
  21. Son, H.J. 2013. The analysis of phytoplankton community structure in the middle-lower phar of the Nakdong River. Korean Society of Environmental Engineers 35(6): 430-435. https://doi.org/10.4491/KSEE.2013.35.6.430
  22. Unni, K.S. and S. Pawar. 2000. The phytoplankton along a pollution in the river Mahanadi (M.P. state) India-multivariate approach. Hydrobiologia 430: 87-96. https://doi.org/10.1023/A:1004025231206
  23. Vogel, S. 1996. Life in moving fluids: The physical biology of flow. Princeton Univ. Press. Pinceton, NJ : 84.
  24. Xia, L., X. Lu and C. Yuwei. 2011. The effects of temperature and nutrient ratios on Microcystis blooms in Lake Taihu, China: An 11-year investigation. Harmful Algae 10: 337-343. https://doi.org/10.1016/j.hal.2010.12.002
  25. Xin, W., H. Chunbo, Z. Feng, F. Chuanping and Y. Yingnan. 2011. Inhibition of the growth of two blue-green algae species (Microcystis areginosa and Anabaena spirodes) by acidificatio treatments using carbon dioxide. Bioresource Technology 102: 5742-5748. https://doi.org/10.1016/j.biortech.2011.03.015
  26. Yoshida, T., M. Kagami, G.T. Bahadur and J. Urabe. 2001. Seasonal succession of zooplankton in the north basin of Lake Biwa. Aquatic Ecology 35: 19-29. https://doi.org/10.1023/A:1011498202050
  27. Yoshimasa, Y. 2009. Environmental factors that determine the occurrence and seasonal dynamics of Aphanizomenon flosaquae. Journal of Limnology 68(1): 122-132. https://doi.org/10.4081/jlimnol.2009.122
  28. Zohary, T., J. Erez, M. Gophen, F.I. Berman and M. Stiller. 1994. Seasonality of stable carbon isotopes within the pelagic food web of Lake Kinneret. Limnology and Oceanography 39: 1030-1043. https://doi.org/10.4319/lo.1994.39.5.1030