DOI QR코드

DOI QR Code

Robust Sensorless Sliding Mode Flux Observer for DTC-SVM-based Drive with Inverter Nonlinearity Compensation

  • Aimad, Ahriche (Applied Automation Laboratory, Dept. of Automation, University of Boumerdes) ;
  • Madjid, Kidouche (Applied Automation Laboratory, Dept. of Automation, University of Boumerdes) ;
  • Mekhilef, Saad (Power Electronics and Renewable Energy Research Laboratory, Dept. of Electrical Engineering, University of Malaya)
  • Received : 2013.07.26
  • Published : 2014.01.20

Abstract

This paper presents a robust and speed-sensorless stator flux estimation for induction motor direct torque control. The proposed observer is based on sliding mode approach. Stator electrical equations are used in the rotor orientation reference frame to eliminate the observer dependence on rotor speed. Lyapunov's concept for systems stability is adopted to confine the observer gain. Furthermore, the sensitivity of the observer to parameter mismatch is recovered with an adaptation technique. The nonlinearities of the pulse width modulation voltage source inverter are estimated and compensated to enhance stability at low speeds. Therefore, a new method based on the model reference adaptive system is proposed. Simulation and experimental results are shown to verify the feasibility and effectiveness of the proposed algorithms.

Keywords

References

  1. D. Casadei, G. Serra, and A. Tani, "Implementation of a direct torque control algorithm for induction motors based on discrete space vector modulation," IEEE Trans. Power Electron., Vol. 15, No. 4, pp. 769-777, Jul. 2000. https://doi.org/10.1109/63.849048
  2. C. Lascu, I. Boldea, and F.Blaabjerg, "Direct torque control of sensorless induction motors: a sliding mode approach," IEEE Trans. Ind. Applicat., Vol. 40, No. 2, pp. 582-589, Mar./Apr. 2004. https://doi.org/10.1109/TIA.2004.824441
  3. I. Boldea, M. C. Paicu, G. D. Andreescu, and F. Blaabjerg, "Active flux DTFC-SVM sensorless control of IPMSM," IEEE Trans. Energ. Convers., Vol. 24, No. 2, pp. 314-322, Jun. 2009. https://doi.org/10.1109/TEC.2009.2016137
  4. G. Wang, R. Yang, and D. Xu, "DSP-Based Control of Sensorless IPMSM Drives for Wide-Speed-Range Operation," IEEE Trans. Ind. Electron., Vol. 60, No. 2, pp. 720-727, Feb. 2013. https://doi.org/10.1109/TIE.2012.2205360
  5. A. Ghaderi and T. Hanamoto, "Wide-speed-range sensorless vector control of synchronous reluctance motors based on extended programmable cascaded low-pass filters," IEEE Trans. Ind. Electron., Vol. 58, No. 6, pp. 2322-2333, Jun. 2011. https://doi.org/10.1109/TIE.2010.2066537
  6. D. R. Wrobel, A. S. Budden, D. Salt, D. Holliday, P. H. Mellor, A. Dinu, and P. Sangha, "Rotor design for sensorless position estimation in permanent magnet machines," IEEE Trans. Ind. Electron., Vol. 58, No. 9, pp. 3815-3824, Sep. 2011. https://doi.org/10.1109/TIE.2010.2093484
  7. K. Liu, Q. Zhang, J. T. Chen, Z. Q. Zhu, J. Zhang, and A.W. Shen, "Online multi-parameter estimation of non-salient pole PM synchronous machines with temperature variation tracking," IEEE Trans. Ind. Electron., Vol. 58, No. 5, pp. 1776-1788, May 2011. https://doi.org/10.1109/TIE.2010.2054055
  8. T. Orlowska-Kowalska, and M.Dybkowski, "Stator-current based MRAS estimator for a wide range speed-sensorless induction-motor drive," IEEE Trans. Ind. Electron., Vol. 57, No. 4, pp. 1296-1308, Apr. 2010. https://doi.org/10.1109/TIE.2009.2031134
  9. C. Lascu, I. Boldea, and F. Blaabjerg, "A Class of speed Sensorless Sliding-Mode Observers for High-Performance Induction Motor Drives", IEEE Trans. Ind. Electron., Vol. 56, No. 9, pp. 3394-3403, Oct. 2009. https://doi.org/10.1109/TIE.2009.2022518
  10. Z. Qiao, T. Shi, Y. Wang, Y. Yan, C. Xia, and X. He, "New and Sliding-Mode Observer for Position Sensorless Control of Permanent-Magnet Synchronous Motor," IEEE Trans. Ind. Electron., Vol. 60, No. 2, pp. 710-719, Oct. 2013. https://doi.org/10.1109/TIE.2012.2206359
  11. M. S. Jaafarizedah, C. Lascu, and S. Fadali, "State Estimation of Induction Motor Drives Using the Unscented Kalman Filter," IEEE Trans. Ind. Electron., Vol. 59, No. 11, pp. 4207-4216, Nov. 2012. https://doi.org/10.1109/TIE.2011.2174533
  12. S. Zaky, "Stability analysis of speed and stator resistance estimators for sensorless inductionmotor drives," IEEE Trans. Ind. Electron., Vol. 59, No. 2, pp. 858-870, Feb. 2012.
  13. M. S. Zaky, M. Khater, H.Yasin, S. S. Shokralla, "Very low speed and zero speed estimations of sensorless induction motor drives," Electric Power Systems Research. Vol. 80, No. 2. 143-151, 2010. https://doi.org/10.1016/j.epsr.2009.07.012
  14. H. Kim, J. Son, and J. Lee, "A High-Speed Sliding-Mode Observer for the Sensorless Speed Control of a PMSM," IEEE Trans. Ind. Electron., Vol. 58, No. 9, pp. 4069-4077, Oct. 2011. https://doi.org/10.1109/TIE.2010.2098357
  15. Z. Xu, and M. F. Rahman, "Comparison of a Sliding Observer and a Kalman Filter for Direct-Torque-Controlled IPM Synchronous Motor Drives," IEEE Trans. Ind. Electron., Vol. 59, No. 11, pp. 4179-4188, Oct 2012. https://doi.org/10.1109/TIE.2012.2188252
  16. M. L. Corradini, G. Ippoliti, S. Longhi, and G. Orlando, "A Quasi-Sliding Mode Approach for Robust Control and Speed Estimation of PM Synchronous Motors," IEEE Trans. Ind. Electron., Vol. 59, No. 2, pp. 1096-1104, Oct. 2012. https://doi.org/10.1109/TIE.2011.2158035
  17. T. Orlowska-Kowalska and M. Kaminski, "FPGA implementation of the multilayer neural network for the speed estimation of the two- mass drive system," IEEE Trans. Ind. Informat., Vol. 7, No. 3, pp. 436-445, Aug. 2011. https://doi.org/10.1109/TII.2011.2158843
  18. Y. Oguz, M. Dede, "Speed estimation of vector controlled squirrel cage asynchronous motor with artificial neural networks", Energy Conversion and Management, Vol. 52, No.1, pp. 675-686, Jan. 2011. https://doi.org/10.1016/j.enconman.2010.07.046
  19. S. Kumar, J. Prakash, P. Kanagazabapathy, "A critical evaluation and experimental verification of Extended Kalman Filter, Unscented Kalman Filter and Neural State Filter for state estimation of three phase induction motor," Applied Soft Computing, Vol. 11, No. 3, 3199-3208, Apr. 2011. https://doi.org/10.1016/j.asoc.2010.12.022
  20. J. Guzinski and H. Abu-Rub, "Speed Sensorless Induction Motor Drive with Predictive Current Controller," IEEE Trans. Ind. Electron., Vol. 60, No. 2, pp. 699-709, Feb. 2013.
  21. K. L. Z. Q. Zhu, Q. Zhang, and J. Zhang, "Influence of Nonideal Voltage Measurement on Parameter Estimation in Permanent-Magnet Synchronous Machines," IEEE Trans. Ind. Electron., Vol. 59, No. 6, pp. 2438-2447, Jun. 2012.
  22. K.D. Hoang, Z.Q. Zhu, and M.P. Foster, "Influence and compensation of inverter voltage drop in direct torque-controlled four-switch three-phase PM brushless AC drives," IEEE Trans. Pow. Electron., Vol. 26, No. 8, pp. 2343-2357, Aug. 2011. https://doi.org/10.1109/TPEL.2010.2096561
  23. R. Munoz, and T.A. Lipo, "On-line dead-time compensation technique for open-loop PWM-VSI drives," IEEE Trans. Pow. Electron., Vol. 14, No. 4, pp. 683-689, Jul. 1999. https://doi.org/10.1109/63.774205
  24. H. W. Kim, M. J. Youn, K. Y. Cho, and H. S. Kim, "Nonlinearity estimation and compensation of PWM VSI for PMSM under resistance and flux linkage uncertainty," IEEE Trans. Control Syst. Technol, Vol. 14, No. 4, pp. 589-601, Jul. 2006. https://doi.org/10.1109/TCST.2006.876622
  25. H. B. Zhao, Q. M. Wu, and A. Kawamura, "An accurate approach of nonlinearity compensation for VSI inverter output voltage," IEEE Trans. Pow. Electron., Vol. 19, No. 4, pp. 1029-1035, Jul. 2004. https://doi.org/10.1109/TPEL.2004.830072
  26. N. Urasaki, T. Senjyu, K. Uezato, and T. Funabashi, "An adaptive dead-time compensation strategy for voltage source inverter fed motor drives," IEEE Trans. Pow. Electron., Vol. 20, No. 5, pp. 1150-1160, Sep. 2005. https://doi.org/10.1109/TPEL.2005.854046
  27. S. Y. Kim, W. Lee, M. S. Rho, and S. Y. Park, "Effective dead-time compensation using a simple vectorial disturbance estimator in PMSM drives," IEEE Trans. Ind. Electron., Vol. 57, No. 5, pp. 1609-1614, May 2010. https://doi.org/10.1109/TIE.2009.2033098
  28. S. H. Hwang and J. M. Kim, "Dead time compensation method for voltage-fed PWM inverter," IEEE Trans. Ener. Conver., Vol. 25, No. 1, pp. 1-10, Mar. 2010 https://doi.org/10.1109/TEC.2009.2031811
  29. M. A. Herran, J. R. Fischer, S. A. Gonzalez, M. G. Judewicz, and D. O. Carrica, " Adaptive dead-time compensation for grid-connected PWM inverters of single-stage PV systems," IEEE Trans. Pow. Electron., Vol. 28, No. 6, 2816-2825, Nov. 2013. https://doi.org/10.1109/TPEL.2012.2227811
  30. Blaabjerg, J.K. Pedersen, and P. Thoegersen, "Improved modulation techniques for PWM-VSI drives," IEEE Trans. Ind. Electron., Vol. 44, No. 1, pp. 87-95, Feb. 1997. https://doi.org/10.1109/41.557503
  31. O. Chee-mun, Dynamic simulation of electric machinery using MATLAB/SIMULINK, Prentice hall PTR, New Jersey , 1998.
  32. V. I. Utkin, Sliding Mode in Control and Optimization, Springer Verlag, 1992.
  33. M. Di Lella, and R. Ramin, Semi-Top Technical Information, Semikron, Version. 2, 2008.
  34. L. Baghli, H. Razik, and A. Rezzoug, "A stator flux oriented drive for an induction motor with extra $(\alpha,\beta)$coils," in Conf. Rec. IECON'98, Vol. 4, pp. 2522-2526, Sep. 1998.
  35. M. E. Ahmed and S. Mekhilef, "Design and implementation of a multilevel three-phase inverter with less switches and low output voltage distortion," Journal of Power Electronics, Vol. 9, No. 4, pp.594-604, Jul. 2009.
  36. M.N. Abdul Kadir, S. Mekhilef, and H. W. Ping, "Dual vector control strategy for a three-stage hybrid cascaded multilevel inverter," Journal of Power Electronics, Vol.10, No. 2, pp.155-164, Mar. 2010. https://doi.org/10.6113/JPE.2010.10.2.155
  37. M. K. Menshawi and S. Mekhilef, "Multi Stage Inverters Control using Surface Hysteresis Comparators," Journal of Power Electronics, Vol. 13, No. 1, pp.59-69, Jan. 2013. https://doi.org/10.6113/JPE.2013.13.1.59

Cited by

  1. Parallel Sensorless Speed Control using Flux-axis Current for Dual SPMSMs Fed by a Single Inverter vol.10, pp.3, 2015, https://doi.org/10.5370/JEET.2015.10.3.1048
  2. Nonlinear Observer-based Control of Synchronous Machine Drive System vol.10, pp.3, 2015, https://doi.org/10.5370/JEET.2015.10.3.1035
  3. An Improved Flux Estimator for Gap Flux Orientation Control of DC-Excited Synchronous Machines vol.15, pp.2, 2015, https://doi.org/10.6113/JPE.2015.15.2.419
  4. A Hybrid Algorithm for Preserving Energy and Delay Routing in Mobile Ad-Hoc Networks vol.85, pp.4, 2015, https://doi.org/10.1007/s11277-015-2916-y
  5. Sensorless Control of Induction Machine Supplied by Current Source Inverter vol.17, pp.6, 2015, https://doi.org/10.1002/asjc.1126
  6. New application of predictive direct torque control in permanent magnet synchronous generator-based wind turbine vol.7, pp.2, 2015, https://doi.org/10.1063/1.4915261