DOI QR코드

DOI QR Code

Quantitative evaluation of alveolar cortical bone density in adults with different vertical facial types using cone-beam computed tomography

  • Ozdemir, Fulya (Department of Orthodontics, Faculty of Dentistry, Yeditepe University) ;
  • Tozlu, Murat (Department of Orthodontics, Faculty of Dentistry, Yeditepe University) ;
  • Cakan, Derya Germec (Department of Orthodontics, Faculty of Dentistry, Yeditepe University)
  • Received : 2013.04.21
  • Accepted : 2013.06.28
  • Published : 2014.01.25

Abstract

Objective: The purpose of this study was to quantitatively evaluate the cortical bone densities of the maxillary and mandibular alveolar processes in adults with different vertical facial types using cone-beam computed tomography (CBCT) images. Methods: CBCT images (n = 142) of adult patients (20-45 years) were classified into hypodivergent, normodivergent, and hyperdivergent groups on the basis of linear and angular S-N/Go-Me measurements. The cortical bone densities (in Hounsfield units) at maxillary and mandibular interdental sites from the distal aspect of the canine to the mesial aspect of the second molar were measured on the images. Results: On the maxillary buccal side, female subjects in the hyperdivergent group showed significantly decreased bone density, while in the posterior region, male subjects in the hyperdivergent group displayed significantly decreased bone density when compared with corresponding subjects in the other groups (p<0.001). Furthermore, the subjects in the hyperdivergent group had significantly lower bone densities on the mandibular buccal side than hypodivergent subjects. The maxillary palatal bone density did not differ significantly among groups, but female subjects showed significantly denser palatal cortical bone. No significant difference in bone density was found between the palatal and buccal sides in the maxillary premolar region. Overall, the palatal cortical bone was denser anteriorly and buccal cortical bone was denser posteriorly. Conclusion: Adults with the hyperdivergent facial type tend to have less-dense buccal cortical bone in the maxillary and mandibular alveolar processes. Clinicians should be aware of the variability of cortical bone densities at mini-implant placement sites.

Keywords

References

  1. Park HM, Kim BH, Yang IH, Baek SH. Preliminary three-dimensional analysis of tooth movement and arch dimension change of the maxillary dentition in Class II division 1 malocclusion treated with first premolar extraction: conventional anchorage vs. mini-implant anchorage. Korean J Orthod 2012; 42:280-90. https://doi.org/10.4041/kjod.2012.42.6.280
  2. Schatzle M, Mannchen R, Zwahlen M, Lang NP. Survival and failure rates of orthodontic temporary anchorage devices: a systematic review. Clin Oral Implants Res 2009;20:1351-9. https://doi.org/10.1111/j.1600-0501.2009.01754.x
  3. Miyawaki S, Koyama I, Inoue M, Mishima K, Sugahara T, Takano-Yamamoto T. Factors associated with the stability of titanium screws placed in the posterior region for orthodontic anchorage. Am J Orthod Dentofacial Orthop 2003;124:373-8. https://doi.org/10.1016/S0889-5406(03)00565-1
  4. Motoyoshi M, Yoshida T, Ono A, Shimizu N. Effect of cortical bone thickness and implant placement torque on stability of orthodontic mini-implants. Int J Oral Maxillofac Implants 2007;22:779-84.
  5. Tozlu M, Nalbantgil D, Oztoprak MO, Ozdemir F. Mini-implantların devrilmesini onlemede yeni bir yaklasim / A new approach to prevent migration of mini-implants. Turkish J Orthod 2011;24:170-80. https://doi.org/10.13076/1300-3550-24-3-170
  6. Ozdemir F, Tozlu M, Germec-Cakan D. Cortical bone thickness of the alveolar process measured with cone-beam computed tomography in patients with different facial types. Am J Orthod Dentofacial Orthop 2013;143:190-6. https://doi.org/10.1016/j.ajodo.2012.09.013
  7. Cha JY, Kil JK, Yoon TM, Hwang CJ. Miniscrew stability evaluated with computerized tomography scanning. Am J Orthod Dentofacial Orthop 2010; 137:73-9. https://doi.org/10.1016/j.ajodo.2008.03.024
  8. Iijima M, Takano M, Yasuda Y, Muguruma T, Nakagaki S, Sakakura Y, et al. Effect of the quantity and quality of cortical bone on the failure force of a miniscrew implant. Eur J Orthod 2013;35:583-9. https://doi.org/10.1093/ejo/cjs066
  9. Lundstrom A, McWilliam JS. A comparison of vertical and horizontal cephalometric variables with regard to heritability. Eur J Orthod 1987;9:104-8. https://doi.org/10.1093/ejo/9.1.104
  10. Moon CH, Park HK, Nam JS, Im JS, Baek SH. Relationship between vertical skeletal pattern and success rate of orthodontic mini-implants. Am J Orthod Dentofacial Orthop 2010;138:51-7. https://doi.org/10.1016/j.ajodo.2008.08.032
  11. Duckmanton NA, Austin BW, Lechner SK, Klineberg IJ. Imaging for predictable maxillary implants. Int J Prosthodont 1994;7:77-80.
  12. Aranyarachkul P, Caruso J, Gantes B, Schulz E, Riggs M, Dus I, et al. Bone density assessments of dental implant sites: 2. Quantitative cone-beam computerized tomography. Int J Oral Maxillofac Implants 2005;20:416-24.
  13. de Oliveira RC, Leles CR, Normanha LM, Lindh C, Ribeiro-Rotta RF. Assessments of trabecular bone density at implant sites on CT images. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2008;105:231-8. https://doi.org/10.1016/j.tripleo.2007.08.007
  14. Nomura Y, Watanabe H, Shirotsu K, Honda E, Sumi Y, Kurabayshi T. Stability of voxel values from conebeam computed tomography for dental use in evaluating bone mineral content. Clin Oral Implants Res 2013;24:543-8. https://doi.org/10.1111/j.1600-0501.2012.02420.x
  15. Lagravère MO, Fang Y, Carey J, Toogood RW, Packota GV, Major PW. Density conversion factor determined using a cone-beam computed tomography unit NewTom QR-DVT 9000. Dentomaxillofac Radiol 2006;35:407-9. https://doi.org/10.1259/dmfr/55276404
  16. Mah P, Reeves TE, McDavid WD. Deriving Hounsfield units using grey levels in cone beam computed tomography. Dentomaxillofac Radiol 2010;39:323-35. https://doi.org/10.1259/dmfr/19603304
  17. Nomura Y, Watanabe H, Honda E, Kurabayashi T. Reliability of voxel values from cone-beam computed tomography for dental use in evaluating bone mineral density. Clin Oral Implants Res 2010;21:558-62. https://doi.org/10.1111/j.1600-0501.2009.01896.x
  18. Marquezan M, Lau TC, Mattos CT, Cunha AC, Nojima LI, Sant'Anna EF, et al. Bone mineral density. Angle Orthod 2012;82:62-6. https://doi.org/10.2319/031811-192.1
  19. Cassetta M, Stefanelli LV, Pacifici A, Pacifici L, Barbato E. How accurate Is CBCT in measuring bone density? A comparative CBCT-CT in vitro study. Clin Implant Dent Relat Res 2013 Jan 7. [Epub ahead of print]
  20. Nackaerts O, Maes F, Yan H, Couto Souza P, Pauwels R, Jacobs R. Analysis of intensity variability in multislice and cone beam computed tomography. Clin Oral Implants Res 2011;22:873-9. https://doi.org/10.1111/j.1600-0501.2010.02076.x
  21. Silva IM, Freitas DQ, Ambrosano GM, Bóscolo FN, Almeida SM. Bone density: comparative evaluation of Hounsfield units in multislice and cone-beam computed tomography. Braz Oral Res 2012;26:550-6. https://doi.org/10.1590/S1806-83242012000600011
  22. Bryant JA, Drage NA, Richmond S. Study of the scan uniformity from an i-CAT cone beam computed tomography dental imaging system. Dentomaxillofac Radiol 2008;37:365-74. https://doi.org/10.1259/dmfr/13227258
  23. Pauwels R, Nackaerts O, Bellaiche N, Stamatakis H, Tsiklakis K, Walker A, et al; SEDENTEXCT Project Consortium. Variability of dental cone beam CT grey values for density estimations. Br J Radiol 2013;86: 20120135. https://doi.org/10.1259/bjr.20120135
  24. Moon SH, Park SH, Lim WH, Chun YS. Palatal bone density in adult subjects: implications for miniimplant placement. Angle Orthod 2010;80:137-44. https://doi.org/10.2319/011909-40.1
  25. Park HS, Lee YJ, Jeong SH, Kwon TG. Density of the alveolar and basal bones of the maxilla and the mandible. Am J Orthod Dentofacial Orthop 2008; 133:30-7. https://doi.org/10.1016/j.ajodo.2006.01.044
  26. Han S, Bayome M, Lee J, Lee YJ, Song HH, Kook YA. Evaluation of palatal bone density in adults and adolescents for application of skeletal anchorage devices. Angle Orthod 2012;82:625-31. https://doi.org/10.2319/071311-445.1
  27. Choi JH, Park CH, Yi SW, Lim HJ, Hwang HS. Bone density measurement in interdental areas with simulated placement of orthodontic miniscrew implants. Am J Orthod Dentofacial Orthop 2009; 136:766. https://doi.org/10.1016/j.ajodo.2009.08.005
  28. Mavropoulos A, Kiliaridis S, Bresin A, Ammann P. Effect of different masticatory functional and mechanical demands on the structural adaptation of the mandibular alveolar bone in young growing rats. Bone 2004;35:191-7. https://doi.org/10.1016/j.bone.2004.03.020
  29. Cheng SJ, Tseng IY, Lee JJ, Kok SH. A prospective study of the risk factors associated with failure of mini-implants used for orthodontic anchorage. Int J Oral Maxillofac Implants 2004;19:100-6.
  30. Migliorati M, Benedicenti S, Signori A, Drago S, Barberis F, Tournier H, et al. Miniscrew design and bone characteristics: an experimental study of primary stability. Am J Orthod Dentofacial Orthop 2012;142:228-34. https://doi.org/10.1016/j.ajodo.2012.03.029

Cited by

  1. Influence of exposure factors on the variability of CBCT voxel values: a phantom study. vol.43, pp.6, 2014, https://doi.org/10.1259/dmfr.20140128
  2. Accelerated Bone Formation in Distracted Alveolar Bone After Injection of Recombinant Human Bone Morphogenetic Protein-2 vol.86, pp.9, 2014, https://doi.org/10.1902/jop.2015.140697
  3. Maxillary buccal cortical plate inclination at mini-screw insertion sites vol.85, pp.5, 2014, https://doi.org/10.2319/070914-480.1
  4. Risk factors associated with the failure of miniscrews - A ten-year cross sectional study vol.30, pp.1, 2016, https://doi.org/10.1590/1807-3107bor-2016.vol30.0124
  5. Relationship Between Biotype and Bone Morphology in the Lower Anterior Mandible: An Observational Study vol.87, pp.6, 2014, https://doi.org/10.1902/jop.2016.150546
  6. Three-dimensional evaluation of dentofacial transverse widths of adults with various vertical facial patterns vol.153, pp.5, 2014, https://doi.org/10.1016/j.ajodo.2017.08.026
  7. Buccal cortical bone thickness in different sagittal skeletal relationship vol.77, pp.4, 2014, https://doi.org/10.1016/j.odw.2018.08.001
  8. Evaluation of the palatal bone in different facial patterns for orthodontic mini-implants insertion: A cone-beam computed tomography study vol.26, pp.1, 2014, https://doi.org/10.1590/2177-6709.26.1.e2119204.oar
  9. Computed tomography assessment of maxillary bone density for orthodontic mini-implant placement with respect to vertical growth patterns vol.48, pp.4, 2014, https://doi.org/10.1177/14653125211020015