DOI QR코드

DOI QR Code

Hypoxia Estimation of Coastal Bay through Estimation of Stratification Degree

성층강도 산정을 통한 내만의 Hypoxia 산정

  • Jung, Woo-Sung (Department of Ecological engineering, Pukyong National University) ;
  • Lee, Won-Chan (Marine Environmental Management Division, National Fisheries Research & Development Institute) ;
  • Hong, Sok-Jin (Marine Environmental Management Division, National Fisheries Research & Development Institute) ;
  • Kim, Jin-Lee (Department of water Environt Research, National Institute of Environmental Research) ;
  • Kim, Dong-Myung (Department of Ecological engineering, Pukyong National University)
  • 정우성 (부경대학교 생태공학과) ;
  • 이원찬 (국립수산과학원 어장환경과) ;
  • 홍석진 (국립수산과학원 어장환경과) ;
  • 김진이 (국립환경과학원 유역총량연구과) ;
  • 김동명 (부경대학교 생태공학과)
  • Received : 2014.09.02
  • Accepted : 2014.10.28
  • Published : 2014.10.31

Abstract

Goal of this study is estimating of validity of calculated vertical diffusion coefficient for Masan bay is semi-enclosed bay by using eco-hydrodynamic model that is used to analysis of physical structure of coastal waters and calculates the vertical diffusion coefficient. physical structure of coastal waters is calculated by EFDC model, vertical diffusion coefficient calculated as the density gradient is bigger, the vertical diffusion coefficient as density gradient is increases, the vertical diffusion coefficient is decreased. Validity of vertical diffusion coefficient estimated by reproducibility of concentration of dissolved oxygen that calculated in ecosystem model is constructed by Stella program. The Results of model in 2008~2009 were $R^2$ value of 2008 is 0.529~0.700 and $R^2$ value is 0.542~0.791. This results were similar to observed data and simulated to hypoxia at that time. The 'vertical diffusion coefficient' represents stratification and physical stable of a water body, and will be useful for prediction of Hypoxia outbreak.

본 연구는 반폐쇄성 해역인 마산만을 대상으로 eco-hydrodynamic model을 이용하여 해역의 물리적 구조를 분석하여, 물리적 안정도를 나타내는 수직확산계수를 산정하고, 생태계 모델에 적용하여 그 타당성을 평가하는 것이다. 해역의 물리적 구조는 EFDC모델을 사용하여 구하였으며, 수직 확산계수는 수층간의 밀도차이가 커질수록 감소하도록 산정하였다. 산정된 수직 확산계수를 Stella프로그램을 이용하여 구축한 생태계모델에 적용하여, 용존산소 재현성으로 그 타당성을 평가하였다. 수직확산계수 변화를 추정하여 적용한 모델의 결과는 2008년의 $R^2$값은 0.529~0.700으로 나타났으며, 2009년 $R^2$값은 0.542~0.791로 나타났다. 계산값은 관측값과 유사한 경향을 나타내었으며, 만 내측의 빈산소수괴를 잘 재현하였다. 본 연구에서 적용된 수직확산계수는 해역의 밀도성층과 물리적 안정도를 의미하는데, 향후 폐쇄성 내만해역의 빈산소수괴 발생 예측에 유용하게 활용될 것으로 판단된다.

Keywords

References

  1. Choi, W. J., C. K. Park and S. M. Lee(1994), Numetical Simulation of the Formulation of Oxygen Deficient Water-masses in Jinhae Bay, Bull. Korean Fish. Soc, Vol. 27, No. 4, pp. 413-433.
  2. Donald, W. S. and S. W. Nixon(1992), Stratification and Bottom-Water Hypoxia in the Pamlico River Estuary, Estuaries, Vol. 15, No. 3, pp. 270-281. https://doi.org/10.2307/1352775
  3. Fennel, K., J. Hu, A. Laurent, M. Marta-Almeida and R. Hetland(2013), Sensitivity of hypoxia predictions for the northern Gulf of Mexico to sediment oxygen consumption and model nesting, Journal of Geophysical Research : Oceans, Vol. 119, pp. 990-1002.
  4. Fisher, D. M.(2007). Modeling Dynamic Dystem : Lessons for a First Course Second Edition, STELLATM software.
  5. Friligos, N. and A. Zenetos(1988), Elefsis Bay anoxia: nuttrient conditions and benthic community structure. P.S.Z.N.I, Mar. Ecol, Vol. 9, No. 4, pp. 273-290. https://doi.org/10.1111/j.1439-0485.1988.tb00208.x
  6. Hansen, H. P., H. C. Gisenhagen and G. Behrends(1999), Seasonal and long-term control of bottom-water oxyen deficiency in a stratified shallow-water coastal system, ICES Journal of Marine Science, Vol. 56, pp. 65-712. https://doi.org/10.1006/jmsc.1999.0629
  7. Hong, S. J., W. C. Lee, R. H. Jung, H. T. Oh, J. H. Jang, J. H. Goo and D. M. Kim(2007a), Ecosystem Modeling for Improvement Summer Water Quality of Jinhae Bay in 2003, Journal of the Korean Society of Marine Environmental & Safety, Vol. 13, No. 2, pp. 103-110.
  8. Hong, S. J., W. C. Lee, J. S. Park, H. T. Oh, S. P. Yoon, H. C. Kim and D. M. Kim(2007b), Ecological Modeling for estimation of Autochthonous COD in Jinhae Bay, Journal of the Environmental Sciences, Vol. 16, No. 8, pp. 959-971. https://doi.org/10.5322/JES.2007.16.8.959
  9. Hong, J. S. and H. S. Lim(1997), Benthic community recovery after hypoxia stress in Chinhae Bay, Korea. 32 nd EMBS. p. 117.
  10. Jung, T. S. and J. H. Choi(2011), On reducing the computing time of EFDC hydrodynamic model, Journal of the Korean Society for Marine Environmental Engineering, Vol. 14, No. 2, pp. 121-129. https://doi.org/10.7846/JKOSMEE.2011.14.2.121
  11. Karim, M. R., M. Sekine and M. Ukita(2002), Simulation of eutrophication and associated occurrence of hypoxic anoxic condition in a coastal bay in Japan, Marine Pollution Bulletin, Vol. 45, pp. 280-285. https://doi.org/10.1016/S0025-326X(02)00098-X
  12. Kang, Y. S., Y. Chae and H. R. Lee(2011), Variation of Density Stratification due to Fresh Water Discharge in the Kwangyang Bay and Jinju Bay, Journal of the Korean Society of coastal and Ocean Engineers, Vol. 23, No. 1, pp. 126-137. https://doi.org/10.9765/KSCOE.2011.23.1.126
  13. Kim, C. K. and P. Y. Lee(1994), Water Mass Structure and Dissolved Oxygen Distribution in Chinhae Bay, Bull. Korean Fish. Soc, Vol. 27, No. 5, pp. 572-582.
  14. Kim, J. B., J. I. Park, C. G. Jung, W. J. Choi, W. C. Lee and Y. H. Lee(2010), Physicochemical Characteristics of seawater in Gamak bay for a period Hypoxic water mass disappearance, The Journal of the Korean Society of Marine Environment & Safety, Vol. 16, No. 3, pp. 241-248.
  15. Kim, J. B., S. Y. Lee, J. Yoo, Y. H. Choi, C. S. Chang and P. Y. Lee(2006), The Characteristics of Oxygen Deficient Water Mass in Gamak Bay, The Journal of the Korean Society of Marine Environment & Safety, Vol. 9, No. 4, pp. 216-224.
  16. Kim, J. K., G. I. Gyeong and J. H. Joeng(2008), Three-Dimensional Mixing Characteristics in Seomjin River Estuary, Journal of Korean Society for Marine Environmental Engineering, Vol. 11, No. 3, pp. 164-174.
  17. Koriyama, M., M. Seguichi, T. Ishitani, A. Syam and O. Kato(2006), Estimation of vertical diffusion coefficient and oxygen consumption rate in the interior western parts of Ariake Sea, Bull. Fac. Agr., Saga Univ, Vol. 92, pp. 33-44.
  18. Koriyama, M., M. Seguchi, T. Ishitani and N. D. Thien(2009), Study on the occurrence mechanism of hypoxic water in the western interior parts of the Atiake sea using a two-layer Box model, Bull. Fac Agr., Saga Univ, Vol. 94, pp. 1-13.
  19. Koriyama, M., M. Seguichi, T. Ishitani and A. Isnansetyo (2011), Analysis of Hypoxia in the western interior parts of the Ariake Sea, Japan, using a box model, Environ Monit Assessm Vol. 179, pp. 65-80. https://doi.org/10.1007/s10661-010-1719-6
  20. Lee, I. C., H. W. Kong and S. J. Yoon(2008), Numerical Prediction for Reduction of Oxygen Deficient Water Mass by Ecological Model in Jinhae Bay, Journal of Ocean Engineering and Technology, Vol. 22, No. 5, pp. 75-82.
  21. Lim, H. S.(1993), The study on the macrozoobenthic ecology in Chinhae bay. Korea, Ph. D thesis Pukyung University, p. 311.
  22. Lim, H. S. and J. S. Hong(1994), Ecology of the Macrobenthic Community in Chinhae Bay, Korea 1. Benthic Environment, Bull. Korean Fish. Soc, Vol. 27, No. 2, pp. 200-214.
  23. Lim, H. S. and K. Y. Park(1998), Community Structure of the Macrobenthos in the Soft Bottom of Yongsan River Estuary, Korea 2. The Occurrence of Summer Hypoxia and Benthic Community, J. Korea Fish. Soc, Vol. 31, No. 3, pp. 343-352.
  24. MLTM(2008), Ministry of Land, Transport and Maritime Affairs, Primary General plan of Total Pollution Load Management(TPLM) of Masan Bay Special Management Area.
  25. MLTM(2009), Ministry of Land, Transport and Maritime Affairs, Study of Total Pollution Load Management(TPLM) of Masan Bay, National Fisheries Research & Development Institute (NFRDI).
  26. MLTM(2010), Ministry of Land, Transport and Maritime Affairs, Study of Total Pollution Load Management (TPLM) of Masan Bay, National Fisheries Research & Development Institute (NFRDI).
  27. NFRDI(2009), National Fisheries Research & Development Institute, Oxygen Deficient Water Mass of Korean Coastal.
  28. Park, S. E., W. C. Lee, S. J. Hong, H. C. Kim and J. H. Kim(2011), Variation in Residence Time and Water Exchange Rate by Release Time of Pollutants Over a Tidal Cycle in Masan Bay, Journal of the Korean Society for Marine Environmental Engineering, Vol. 14, No. 4, pp. 249-256. https://doi.org/10.7846/JKOSMEE.2011.14.4.249
  29. Simson, J. H., J. Brown, J. Matthews and G. Allen(1990), Tidal straining, density, currents, and stirring in the control of estuarine Stratification, Estuaries, Vol. 13, No. 2, pp. 125-132. https://doi.org/10.2307/1351581
  30. Sanderson, E. W., M. Jaiteh, M. A. Levy, K. H. Redford, A. V. Wannebo and G. Woolmer(2002), The Human Footprint and Last of the Wild, Bioscience, Vol. 52, No. 10, p. 892.
  31. Takeoka, H., T. Ochi and K. Takatani(1986), The Anoxic Water Mass in Huichi-Nada, Oceanographical Society of Japan, Vol. 42, pp. 12-21. https://doi.org/10.1007/BF02109188
  32. Wiseman, W. J., N. N. Rabalais, R. E. Tuner, S. P. Dinnel and A. MacNaughton(1997), Seasonal and interannual variability within the Louisianan coastal current : stratification and hypoxia, Journal of Marine System, Vol. 12, pp. 237-248. https://doi.org/10.1016/S0924-7963(96)00100-5

Cited by

  1. Estimation on Average Residence Time of Particulate Matters in Geoje Bay using Particle Tracking Model vol.22, pp.1, 2016, https://doi.org/10.7837/kosomes.2016.22.1.020
  2. 시계열 분석을 이용한 진동만의 용존산소량 예측 vol.26, pp.4, 2020, https://doi.org/10.7837/kosomes.2020.26.4.382