DOI QR코드

DOI QR Code

Effect of Foundation Flexibility of Offshore Wind Turbine on Force and Movement at Monopile Head

해상풍력발전기 기초구조물의 강성이 모노파일 두부의 부재력 및 변위에 미치는 영향

  • Jung, Sungmoon (Department of Civil and Environmental Engineering, Florida A&M) ;
  • Kim, Sung-Ryul (Department of Civil Engineering, Dong-A University) ;
  • Lee, Juhyung (Geotechnical Engineering Research Division, KICT) ;
  • Le, Chi Hung (Department of Civil Engineering, Dong-A University)
  • Received : 2014.08.26
  • Accepted : 2014.10.30
  • Published : 2014.12.30

Abstract

Recently, the research on renewable energy against depletion of fossil fuel have been actively carried out in the world. Especially, offshore wind turbines are very economical and innovative technology. However, offshore wind turbines experience large base moments due to the wind and wave loading, so the monopile with large diameter needs to be applied. For the economical design of the large diameter pile, it is important to consider the flexibility of the foundation to estimate the maximum moment accurately, based on studies conducted so far. In this paper, the foundation was modeled using the finite element method in order to better describe the large diameter effect of a monopile and the results were compared with those of p-y method. For the examples studied in this paper, the change in maximum moment was insignificant, but the maximum tilt angle from the finite element method was over 14% larger than that of p-y method. Therefore, the finite element approach is recommended to model the flexibility effect of the pile when large tilt angles may cause serviceability issues.

최근 전 세계적으로 화석연료 고갈에 대비하여 신재생에너지에 대한 연구가 활발히 진행 중에 있다. 특히, 해상풍력발전기는 경제성 측면에서 매우 뛰어난 기술로 알려져 있다. 그런데, 해상 풍력발전기는 바람과 풍력 하중 때문에 저면에 큰 모멘트가 발생하므로 대구경 모노파일을 적용하는 것이 필요하다. 이 때, 대구경 말뚝을 경제적으로 설계하려면 기초구조물의 강성이 타워의 최대 모멘트 값에 미치는 영향을 고려하는 것이 중요하다. 본 연구에서는 기초구조물 강성을 산정할 때 모노파일의 대구경 효과를 정밀히 고려하기 위하여 3차원 유한요소해석을 수행하고, 기존의 p-y 해석법에 의한 강성산정 결과와 비교하였다. 본 연구에 적용한 예제의 해석결과, 기초구조물의 강성 산정방법에 따른 말뚝두부 최대 모멘트 값의 변화는 크지 않았지만 말뚝두부 최대 기울어짐 각의 경우 유한요소해석법이 p-y 해석법에 비하여 14% 증가하는 것으로 나타났다. 그러므로, 기울어짐 각이 성능수준에 영향을 미치는 경우 유한요소해석법을 적용하여 기초강성 효과를 정밀하게 고려하는 것이 필요한 것으로 판단된다.

Keywords

References

  1. Agarwal, P. and Manuel, L. (2009), "Simulation of Offshore Wind Turbine Response for Long-term extreme Load Prediction", Engineering Structures, 31, pp.2236-2246. https://doi.org/10.1016/j.engstruct.2009.04.002
  2. API (2007), Recommended Practice for Planning, Design and Constructing Fixed Offshore Platforms, Working Stress Design, American Petroleum Institute.
  3. Bush, E. (2009), A Comparison of Alternative Foundation Models for Offshore Wind Turbines and Resulting Long-Term Loads, M.S. Thesis, the University of Texas at Austin.
  4. Bush, E. and Manuel, L. (2009), "The influence of foundation modeling assumptions on long-term load prediction for offshore wind turbines", Proc. of the ASME 28th International Conference on Ocean, Offshore and Arctic Engineering, Honolulu, Hawaii, May 31-June 5.
  5. Chen J.Y., Matarek, B.A., Carpenter J.F., Gilbert, R.B., Verret, S. and Puskar, F.J. (2009), Analysis of Potential Conservatism in Foundation Design for Offshore Platform Assessment, Final Project Report. Contract M08PC20002 MMS Project Number 612.
  6. DNV (2011), DNV-OS-J101 Design of Offshore Wind Turbine Structures, Det Norske Veritas IEC, 2005, IEC 61400-1 Wind Turbines. Part 1: Design Requirements, International Electrotechnical Commission.
  7. Ensoft, INC(2004), LPILE Plus Version 5.0 Technical Manual.
  8. Geneva, Switzerland Jonkman, J. and Buhl, M. L. (2005), FAST User's Guide, National Renewable Energy Laboratory, Technical Report No. NREL/EL-500-38230.
  9. Hung, L.C. and Kim, S.R. (2014a), "Evaluation of combined horizontal-moment bearing capacities of tripod bucket foundations in undrained clay", Ocean-Engineering, 85. pp.100-109. https://doi.org/10.1016/j.oceaneng.2014.04.025
  10. Hung, L.C. and Kim, S.R. (2014b), "Evaluation of undrained bearing capacities of bucket foundations under combined loads", Marine Georesources & Geotechnology, 32(1), pp. 76-92. https://doi.org/10.1080/1064119X.2012.735346
  11. Hasselmann, K., Barnett, T.P., Bouws, E., Carlson, H., Cartwright, D.E., Enke, K., Ewing, J.A., Gienapp, H., Hasselmann, D.E., Kruseman, P., Meerburg, A., Mller, P., Olbers, D.J., Richter, K., Sell, W. and Walden, H. (1973), "Measurements of windwave growth and swell decay during the Joint North Sea Wave Project (JONSWAP)", Ergnzungsheft zur Deutschen Hydrographischen Zeitschrift Reihe, A(8) (Nr. 12).
  12. Jonkman, J., Butterfield, S., Musial, W. and Scott, G. (2009), Definition of a 5-MW Reference Wind Turbine for Offshore System Development, National Renewable Energy Laboratory, Technical Report No. NREL/TP-500-38060.
  13. Jonkman, J., Butterfield, S., Passon, P., Larsen, T., Camp, T., Nichols, J., Azcona, J. and Martinez, A. (2007), "Offshore code comparison collaboration within IEA wind annex XXIII: phase II results regarding monopile foundation modeling", IEA European Offshore Wind Conference, Berlin, Germany, December 4-6.
  14. Jonkman, J., Butterfield, S., Musial, W. and Scott, G. (2009), Definition of a 5-MW Reference Wind Turbine for Offshore System Development, National Renewable Energy Laboratory, Technical Report No. NREL/TP-500-38060.
  15. Jonkman, J. and Musial, W. (2010), Offshore Code Comparison Collaboration (OC3) for IEA Task 23 Offshore Wind Technology and Deployment, National Renewable Energy Laboratory, Technical Report No. NREL/TP-5000-48191.
  16. Kaimal J.C., Wyngaard J.C., Izumi Y. and Cote O.R. (1972), "Spectral Characteristics of Surface-Layer Turbulence". Quart. J. Royal Meteorology Soc., 98. 563-589. https://doi.org/10.1002/qj.49709841707
  17. Malhotra, S. (2011), Selection, Design and Construction of Offshore Wind Turbine Foundations, Wind Turbines, Dr. Ibrahim Al-Bahadly (Ed.), InTech.
  18. Matlock, H. (1970), "Correlation for design of Laterally Loaded Piles in Soft Clays", Proc. 2th Offshore Technology Conference, Houston Texas, 577-594.
  19. Passon, P. (2006), "Memorandum: Derivation and Description of the Soil-Pile-Interaction Models", IEA-Annex XXIII Subtask 2, Stuttgart, Germany.
  20. Reese, L.C., Cox, W.R. and Koop, F.D. (1974), "Analysis of Laterally Loaded Piles in Sand", Proc. 6th Offshore Technology Conference, paper 2080, Houston, Texas, 473-483.
  21. Simulia (2010), ABAQUS User's Manual. Dassault Systemes Simulia Corp. TRB, 2011. Structural Integrity of Offshore Wind Turbines. Transportation Research Board, Special Report 305.
  22. TRB (2011), Structural Integrity of Offshore Wind Turbines, Transportation Research Board, Special Report 305.
  23. Van der Tempel, J. (2006), Design of Support Structures for Offshore Wind Turbines, Ph.D. Dissertation, Delft University of Technology.
  24. Zaaijer, M. B. (2002), "Foundation models for the dynamic response of offshore wind turbines", Marine Renewable Energy Conference, Newcastle, UK, September.

Cited by

  1. 지반조건 상호작용을 고려한 풍력발전타워의 공진회피 진동수 산정을 위한 고유진동수 해석 연구 vol.17, pp.4, 2014, https://doi.org/10.5762/kais.2016.17.4.734