DOI QR코드

DOI QR Code

A Comparative Study on Interrelation between FDTD Source Models for Coaxial-Probe Feeding Structures

동축 프로브 급전구조에 대한 FDTD 전원 모델들의 상호 관계에 관한 비교 연구

  • Hyun, Seung-Yeup (Department of Telecommunication Engineering, Jeju National University)
  • 현승엽 (제주대학교 통신공학과)
  • Received : 2013.08.23
  • Accepted : 2013.11.12
  • Published : 2014.01.31

Abstract

For an efficient finite-difference time-domain(FDTD) analysis of coaxial-probe feeding structures in radio frequency(RF) and microwave bands, an interrelation between equivalent source modeling techniques is investigated. In existing literature, equivalent source models with delta-gap or magnetic-frill concepts have been developed by many researchers. It is well known that FDTD implementation and computational accuracy of these source models are slightly different. In this paper, the interrelation between FDTD equivalent source models for coaxial feeding structures under the quasi-static approximation(QSA) is presented. As a function of FDTD equivalent source models, time-domain and frequency-domain responses of a coaxial-probe fed conical monopole antenna are calculated numerically. And comparison results of computational accuracy and efficiency are provided.

RF 및 마이크로파 대역에서 동축 프로브 급전구조에 대한 효율적인 유한 차분 시간 영역(FDTD: Finite-Difference Time-Domain) 해석을 위한 등가 전원 모델링 기법들의 상호 관계를 연구하였다. 기존에는 델타 갭(delta-gap) 또는 자기 프릴(magnetic-frill) 개념을 FDTD에 도입한 등가 전원 모델들이 여러 연구진에 의해서 개발되었다. 이러한 등가 전원 모델들의 FDTD 구현 방법과 모의 계산의 정확성은 서로 조금 다르다는 정도로만 잘 알려져 있었다. 본 논문에서는 준정적 근사(quasi-static approximation)하에서 동축-프로브 급전 구조에 대한 FDTD 등가 전원 모델들의 상호 관계를 제시하였다. FDTD 등가 전원 모델들의 적용방법에 따라 동축 급전된 원추형 모노폴 안테나의 시간영역과 주파수영역 응답을 수치계산하였다. 또한, FDTD 모의계산의 정확성과 효율성에 대한 비교 결과를 제시하였다.

Keywords

References

  1. T. H. Hertel, G. S. Smith, "On the convergence of common FDTD feed models for antennas", IEEE Trans. Antennas Propag., vol. 51, no. 8, pp. 1771-1779, Aug. 2003. https://doi.org/10.1109/TAP.2003.815414
  2. S. -Y. Hyun, S. -Y. Kim, and Y. -S. Kim, "An equivalent feed model for the FDTD analysis of antennas driven through a ground plane by coaxial lines", IEEE Trans. Antennas Propag., vol. 57, no. 1, pp. 161-167, Jan. 2009. https://doi.org/10.1109/TAP.2008.2009650
  3. S. -Y. Hyun, S. -Y. Kim, and Y. -S. Kim, "Finitedifference time-domain model for the feeding gap of coaxial probe driven antennas", IET Microw. Antennas Propag., vol. 3, no. 3, pp. 501-506, Apr. 2009. https://doi.org/10.1049/iet-map.2008.0082
  4. T. Uno, "Antenna design using the finite difference time domain method", IEICE Trans. Commun., vol. E88-B, no. 5, pp. 1774-1788, May 2005. https://doi.org/10.1093/ietcom/e88-b.5.1774
  5. A. Taflove, S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd Ed. Boston, MA: Artech House, 2005.
  6. P. A. Tirkas, C. A. Balanis, "Finite-difference timedomain method for antenna radiation", IEEE Trans. Antennas Propag., vol. 40, no. 3, pp. 334-340, Mar. 1992. https://doi.org/10.1109/8.135478
  7. R. L. Luebbers, L. Chen, T. Uno, and S. Adachi, "FDTD calculation of radiation patterns, impedance, and gain for a monopole antenna on a conducting box", IEEE Trans. Antennas Propag., vol. 40, no. 12, pp. 1577-1583, Dec. 1992. https://doi.org/10.1109/8.204752
  8. J. G. Maloney, K. L. Shlager, and G. S. Smith, "A simple FDTD model for transient excitation of antennas by transmission lines", IEEE Trans. Antennas Propag., vol. 42, no. 2, pp. 289-292, Feb. 1994. https://doi.org/10.1109/8.277228
  9. S. -I. Watanabe, M. Taki, "An improved FDTD model for the feeding gap of a thin-wire antenna", IEEE Microw. Guided Wave Lett., vol. 8, no. 4, pp. 152-154, Apr. 1998. https://doi.org/10.1109/75.663515
  10. S. -M. Shum, K. -M. Luk, "FDTD analysis of probe-fed cylindrical dielectric resonator antenna", IEEE Trans. Antennas Propag., vol. 46, no. 3, pp. 325-333, Mar. 1998. https://doi.org/10.1109/8.662651
  11. X. Cao, L. M. Luk, and C. Liang, "Analysis of a cylindrical patch antenna fed with coaxial probe using FDTD", Microw. Opt. Technol. Lett., vol. 37, no. 6, pp. 406-408, Jun. 2003. https://doi.org/10.1002/mop.10932
  12. S. -Y. Hyun, S. -Y. Kim, "3-D thin-wire FDTD analysis of coaxial probe fed in asymmetric microwave components", IEEE Trans. Microw. Theory Tech., vol. 59, no. 11, pp. 2808-2815, Nov. 2011. https://doi.org/10.1109/TMTT.2011.2161881
  13. R. Makinen, J. Juntunen, and m. Kivikoski, "Coarseness error in FDTD thin-wire models", in Proc. IEEE AP-S Int. Symp., Boston, MA, vol. 4, pp. 158-161, Jul. 2001.