DOI QR코드

DOI QR Code

Dynamic Modeling and Control Techniques for Multi-Rotor Flying Robots

멀티로터 무인비행로봇 동역학적 모델링 및 제어기법 연구

  • Kim, Hyeon (School of Mechanical & Automotive Engineering, Kunsan Nat'l Univ.) ;
  • Jeong, Heon Sul (School of Mechanical & Automotive Engineering, Kunsan Nat'l Univ.) ;
  • Chong, Kil To (School of Electronics Engineering, Chonbuk Nat'l Univ.) ;
  • Lee, Deok Jin (School of Mechanical & Automotive Engineering, Kunsan Nat'l Univ.)
  • 김현 (군산대학교 기계자동차공학부) ;
  • 정헌술 (군산대학교 기계자동차공학부) ;
  • 정길도 (전북대학교 전자공학부) ;
  • 이덕진 (군산대학교 기계자동차공학부)
  • Received : 2013.09.04
  • Accepted : 2013.11.19
  • Published : 2014.02.01

Abstract

A multi-rotor is an autonomous flying robot with multiple rotors. Depending on the number of the rotors, multi-rotors are categorized as tri-, quad-, hexa-, and octo-rotor. Given their rapid maneuverability and vertical take-off and landing capabilities, multi-rotors can be used in various applications such as surveillance and reconnaissance in hostile urban areas surrounded by high-rise buildings. In this paper, the unified dynamic model of each tri-, quad-, hexa-, and octo-rotor are presented. Then, based on derived mathematical equations, the operation and control techniques of each multi-rotor are derived and analyzed. For verifying and validating the proposed models, operation and control technique simulations are carried out.

멀티로터는 여러 개의 로터로 이루어진 무인 비행로봇으로써, 로터의 개수에 따라서 트라이로터, 쿼드로터, 헥사로터, 옥토로터 등으로 나누어 진다. 멀티로터는 수직이착륙(VTOL) 및 높은 기동성으로 인하여 다른 무인 비행로봇에 비하여 건물이 밀집되어 있는 도심과 같은 지역의 정찰 및 감시 등 여러 응용분야에 적합하게 활용될 수 있다. 본 논문에서는 멀티로터란 이름으로 연구되고 있는 트라이로터, 쿼드로터, 헥사로터 및 옥토로터 비행로봇에 대한 통합된 동역학적 모델링에 관한 수식을 도출 및 비교 분석을 수행하고, 획득된 수식을 이용하여 각각의 멀티로터 동작원리 및 제어기법에 대한 연구를 수행하였다. 유도된 멀티로터의 동역학 모델링을 이용하여 각각의 멀티로터 형태에 따른 구동원리와 그에 따라 작용하는 힘과 모멘트에 대한 관계식을 유도하였으며, 연속루프닫음기법 기반자세 및 고도제어기를 적용하여 각각의 멀티로터 비행로봇의 구동 및 제어 성능을 시뮬레이션을 통해 검증하였다.

Keywords

References

  1. Schoenwald, D. A., 2000, "AUVs: in Space, Air, Water, and on the Ground," IEEE Control Systems Magazine, Vol. 20, No. 6, pp. 15-18.
  2. Lee, D. J., Kaminer, I., Dobrokhodov, V., and Jones, K., 2010, "Autonomous Feature Following for Visual Surveillance Using a Small Unmanned Aerial Vehicle with Gimbaled Camera System," International Journal of Control, Automation, and Systems, Vol. 8, No. 5, pp. 957-966. https://doi.org/10.1007/s12555-010-0504-1
  3. Lee, D. J. and Andersson, K., 2011, "Hybrid Control of Long-Endurance Aerial Robotic Vehicles for Wireless Sensor Networks," International Journal of Advanced Robotic Systems, Vol. 8, No. 2, pp. 1-13. https://doi.org/10.5772/10531
  4. Tomic, T., Schmid, K., Lutz, P., Domel, A., Kassecker, M., Mair, E., Grixa, I. L., Ruess, F., Suppa, M., and Burschka, D., 2012, "Toward a Fully Autonomous UAV: Research Platform for Indoor and Outdoor Urban Search and Rescue," IEEE Robotics & Automation Magazine, Vol. 19, No. 3, pp. 46-56. https://doi.org/10.1109/MRA.2012.2206473
  5. Bouabdalla, S., 2007, Design and Control of Quadrotors with Application to Autonomous Flying, EPFL, Ph.D. Dissertation.
  6. Naidoo, Y., Stopforth R., and Bright G., 2011, "Quad-Rotor Unmanned Aerial Vehicle Helicopter Modelling & Control," International Journal of Advanced Robotic Systems, Vol. 8, No. 4, pp. 139-149.
  7. Barsk, K. J., 2012, Model Predictive Control of a Tricopter, Linkoping University, MS thesis.
  8. Yoo, D. W., Oh, H. D., Won D. Y., and Tahk, M. J., 2010, "Dynamic Modeling and Stabilization Techniques for Tri-Rotor Unmanned Aerial Vehicles," Int'l. Journal of Aeronautical & Space Sci, Vol. 11, No. 3, pp. 167-174. https://doi.org/10.5139/IJASS.2010.11.3.167
  9. Baranek, R. and Solc, F., 2012, "Modeling and Control of a Hexa-Copter", IEEE Conference Publications, pp.19-23.
  10. Victor, G. A. and Adrian, M. S., 2012, "Integral LQR Control of a Star-Shaped Octorotor", INCAS BULLETIN, Vol. 14, pp. 3-18.
  11. Marks, A., Whidborne, J. F., and Yamamoto, I., September 2012, "Control Allocation for Fault Tolerant Control of a VTOL Octorotor," International Conference on Control, UK.
  12. Beard, R. W. and McLain, T. W., 2012, Small Unmanned Aircraft: Theory and Practice, Princeton University Press, New Jersey, USA.
  13. Baek, S. J., Lee, D. J., Park, S. H., and Chong, K. T. 2013, "Design of Lateral Fuzzy-PI Controller for Unmanned Quadrotor Robot," Journal of Institute of Control, Robotics and System, Vol. 19, No. 2, pp. 164-170. https://doi.org/10.5302/J.ICROS.2013.19.2.164
  14. Singh, A. M., Lee, D. J., Park, and Chong, K. T. 2012, "Attitude and Altitude Controllers for Quadrotor," Proc. of IEEK Summer Conference, pp. 2557-2558.
  15. Mahony, R., Kumar, V., and Corke, P., 2012, "Multirotor Aerial Vehicles Modeling, Estimation and Control of Quadrotor," IEEE Robotics & Automation Magazine, Vol. 19, No. 3, pp. 20-32.

Cited by

  1. Dynamic Object Tracking of a Quad-rotor with Image Processing and an Extended Kalman Filter vol.21, pp.7, 2015, https://doi.org/10.5302/J.ICROS.2015.14.0138
  2. Attitude Control of Quad-rotor by Improving the Reliability of Multi-Sensor System vol.39, pp.5, 2015, https://doi.org/10.3795/KSME-A.2015.39.5.517
  3. Real-Time Flight Testing for Developing an Autonomous Indoor Navigation System for a Multi-Rotor Flying Vehicle vol.40, pp.4, 2016, https://doi.org/10.3795/KSME-A.2016.40.4.343