DOI QR코드

DOI QR Code

A Design of K-Band Low Phase noise Oscillator by Direct Coupling of K-band Dielectric Resonator

유전체 공진기의 직접결합에 의한 K-Band 저위상잡음 발진기 설계

  • Received : 2013.11.10
  • Accepted : 2014.01.13
  • Published : 2014.01.31

Abstract

In this paper, we analysed coupling coefficient between dielectric resonator of high dielectric constant and microstrip line to design for low phase noise dielectric resonator by direct coupling. Also we analysed phase noise of dielectric resonance oscillator with parallel feedback circuit to complement Q by high dielectric constant. We obtained a result from high-stability dielectric oscillator which is optimum designed through analysis of dielectric resonance oscillator phase noise and coupling coefficient. The result is that the phase noise was -83.3dBc/Hz@1KHz at 20.25GHz when we used about 3.6 coupling coefficient and ${\epsilon}_r$=30 dielectric resonator of 20.25GHz dielectric resonance oscillator. As a result, we suggested the direct-connect design method by frequency multiplication mode to prevent phase noise loss at K-Band.

본 논문에서는 직접결합에 의한 저 위상잡음 유전체 공진기 설계를 위하여, 고유전율의 유전체 공진기와 마이크로스트립선로 사이의 결합계수에 대해 분석하였으며, 고유전율로 인한 Q값의 보완을 위한 병렬궤환 회로 적용한 유전체 공진 발진기의 위상잡음을 분석하였다. 유전체 공진기의 위상잡음 분석과 결합계수의 분석을 통하여 고안정 유전체 공진 발진기를 최적화 설계한 결과 20.25GHz 유전체 공진 발진기의 ${\epsilon}_r$=30인 유전체 공진기를 사용한 경우 결합계수가 약 3.6의 값을 나타낼 때 20.25GHz에서 위상잡음은 -84.3dBc/Hz@1KHz를 나타냄을 확인하였다. 본 연구의 결과로 K-Band 에서도 주파수 체배 방식에 의한 위상잡음 손실을 방지하는 직접결합 설계 방안을 제시하였다.

Keywords

References

  1. S.-C. Song, "A new approach for evaluating the phase noise requirements of STALO in a Doppler radar", European Microwave Conf., 2007, Oct. 2007, pp. 198-201.
  2. G. Yan, "The design of the Ku band Dielectric Resonator Oscillator", ICEOT-HDP 2008 Int. Conf, July 2008, pp. 1-9.
  3. H.-C. Roh, and M-H. Go, "Study on the Q Factor Improvement of a microstrip line resonator", J. of The Korea Institute of Electronic Communication Sciences, vol. 3, no. 2, 2009, pp. 194-200.
  4. K.V. Buer, "A novel Technique for Tuning Dielectric Resonators", Microwave Theory and Techniques, IEEE Trans. Microwave Theory and Techniques, vol. 43, no. 1, Jan. 1995, pp. 36-41. https://doi.org/10.1109/22.363010
  5. L. Bary, G. Cibiel, I. Telliex, and J. Rayssac, "Low frequency noise characterization and modeling of microwave bipolar devices : application to the design of low phase noise oscillator", 2002 IEEE MTT-s Int. Microwave Symp. Digest, vol. 1, June 2002, pp. 275-278.
  6. N.W. John, "Frequency Synthesizers", marconi Instruments Ltd., St. Albans, Hertfordshire, Great Britain, U.S. Patent no. 4, 609, 881, Sept. 1986.
  7. W. Loh, S. Yegnanarayanan, R.J. Ram, and P.W. Juodawlkis, "Unified Theory of Oscillator Phase noise I : White noise", IEEE Trans on Microwave Theory and Techniques, vol. 61, Jun. 2013, pp. 2371-2381. https://doi.org/10.1109/TMTT.2013.2260170
  8. H. Mehrpouyan, A.A. Nasir, S.D. Blostein, T. Eriksson, G.K. Karagiannidis, and T. Svensson, "Joint Estimation of Channel and Oscillator Phase noise in MIMO Systems", IEEE Trans. on Signal Processiong, vol. 60, Sep. 2012, pp. 4790-4807. https://doi.org/10.1109/TSP.2012.2202652
  9. T.N. Guo, "Unique Measurement and Modeling of total Phase noise in RF Receiver", IEEE Trans. on Circuits and Systems II : Express Briefs, vol. 60, May 2013, pp. 262-266. https://doi.org/10.1109/TCSII.2013.2251966
  10. S. Yousefi, T. Eriksson, and D. Kuylenstierna, "A novel Model for Simulation of RF Oscillator Phase noise", 2010 IEEE Radio and Wireless Symp.(RWS), Jan. 2010, pp. 262-266.