DOI QR코드

DOI QR Code

Growth Characteristics of Cucumber Scion and Pumpkin Rootstock under Different Levels of Light Intensity and Plug Cell Size under an Artificial Lighting Condition

인공광형 폐쇄형 육묘시스템 내 광량 및 플러그 트레이 규격에 따른 오이 접수 및 호박대목의 생육특성

  • Jang, Yoonah (Vegetable Research Division, National Institute of Horticultural and Herbal Science, RDA) ;
  • Lee, Hye Jin (Vegetable Research Division, National Institute of Horticultural and Herbal Science, RDA) ;
  • Choi, Chang Sun (Vegetable Research Division, National Institute of Horticultural and Herbal Science, RDA) ;
  • Um, Yeongcheol (Vegetable Research Division, National Institute of Horticultural and Herbal Science, RDA) ;
  • Lee, Sang Gyu (Vegetable Research Division, National Institute of Horticultural and Herbal Science, RDA)
  • 장윤아 (농촌진흥청 국립원예특작과학원 채소과) ;
  • 이혜진 (농촌진흥청 국립원예특작과학원 채소과) ;
  • 최장선 (농촌진흥청 국립원예특작과학원 채소과) ;
  • 엄영철 (농촌진흥청 국립원예특작과학원 채소과) ;
  • 이상규 (농촌진흥청 국립원예특작과학원 채소과)
  • Received : 2014.09.04
  • Accepted : 2014.10.06
  • Published : 2014.12.31

Abstract

This study was conducted to investigate the growth characteristics of cucumber scion and pumpkin rootstock under different levels of light intensity (photosynthetic photon flux, PPF) and plug cell size in a closed transplant production system with artificial lighting. Cucumber scion and pumpkin rootstock seedlings were grown under the combinations of three levels of PPF (PPF 165, 248, and $313{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$) and five types of plug tray (50, 72, 105, 128, and 200 cells in the tray) for nine days. The shoot dry weight and relative growth rate increased with increasing PPF and plug cell size. As PPF increased, cucumber scion and pumpkin rootstock seedlings had higher dry matter, lower specific leaf area, and lower hypocotyl length. The first true leaf of cucumber scion and pumpkin rootstock unfolded at eight and seven days after sowing, respectively, except the treatment using 200-cell plug tray. The unfolding of first true leaf of seedlings grown in 200-cell plug tray was delayed by one day. Accordingly, it was considered that the use of small cell size such as 200-cell plug tray would require more time for the production of scion and rootstock. Based on the results, we suggest that cucumber scion and pumpkin rootstock be grown in 105-cell to 128-cell plug tray for eight days and 72-cell to 105-cell plug tray for seven days, respectively, when using splice grafting method with root-removed rootstock. Additionally, higher PPF is suggested to improve the growth and quality of scion and rootstock.

균일한 고품질의 접수 및 대목 생산을 목적으로, 인공광형 폐쇄형 육묘시스템 내에서의 접수 및 대목 육묘기술을 개발하고자, 폐쇄형 육묘시스템 내에서의 광량 및 플러그 트레이 규격에 따른 오이 접수 및 호박 대목의 생육을 조사하였다. 광량 3수준 (photosynthetic photon flux, PPF 165, 248, $313{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$) 및 플러그 트레이 셀 규격 5가지(50, 72, 105, 128, 200공)를 조합한 15처리로 9일간 육묘하였다. 오이 접수와 호박 대목의 지상부 건물중은 광량과 플러그 트레이의 셀 크기가 증가할수록 증가하였으며, 상대생장률은 광량과 플러그 트레이의 셀 크기에 따라 두 배 가까운 차이를 보였다. 그와 함께 광량의 증가에 따라 건물률이 증가하고 비엽면적 및 배축장이 감소하여, 묘의 품질이 향상됨을 확인할 수 있었다. 제1본엽의 전개는 200공 플러그 트레이에 육묘한 경우를 제외하고 오이 접수의 경우 파종 8일, 호박 대목의 경우 파종 7일경부터 이루어졌다. 200공 플러그 트레이에 육묘한 경우, 다른 플러그 트레이 규격을 이용한 경우에 비해 생육 및 본엽 전개가 하루 정도 늦어지는 경향을 보였다. 따라서 생육 및 공간이용효율을 고려하였을 때, 단근합접을 위한 오이 접수 및 호박 대목 생산을 위해서는 오이 접수의 경우 105공~128공 플러그 트레이를 이용하여 8일 내외, 호박 대목의 경우 72공~105공 플러그 트레이를 이용하여 7일 내외로 육묘하는 것이 추천된다. 아울러 광량 증가에 따라 묘의 생육 및 품질이 향상되므로, 검토된 범위 내에서 가능한 광량을 높여주는 관리가 추천된다.

Keywords

References

  1. Centeno, A., P. Baeza, and J.R. Lissarague. 2010. Relationship between soil and plant water status in wine grapes under various water deficit regimes. HortTechnology 20:585-593.
  2. Cha, M.K., J.E. Son, and Y.Y. Cho. 2014. Growth model of sowthistle (Ixeris dentata Nakai) using expolinear function in a closed-type plant production system. Kor. J. Hort. Sci. Technol. 32:165-170.
  3. Cho, Y.Y., K.Y. Choi, Y.B. Lee, and J.E. Son. 2012. Growth characteristics of sowthistle (Ixeris dentata Nakai) under different levels of light intensity, electrical conductivity of nutrient solution, and planting density in a plant factory. Hort. Environ. Biotechnol. 53: 368-372. https://doi.org/10.1007/s13580-012-0691-1
  4. Goudriaan, J. and H.H. van Laar. 1994. Modeling potential crop growth processes. Kluwer Academic Publishers, The Netherlands.
  5. Jang, Y.A., K.H. Yeo, J.G. Lee, C.S. Choi, Y.C. Um. S.G. Lee, and M.K. Yoon. 2013a. Current status of grafted fruit vegetable transplants production and cultivation. J. of the Kor. Soc. for Seed Sci. & Ind. 10(2): 17-27.
  6. Jang, Y.A., B.H. Mun, T.C. Seo, J.G. Lee, S.S. Oh, and C.H. Chun. 2013b. Effects of light quality and intensity on the carbon dioxide exchange rate, growth, and morphogenesis of grafted pepper transplants during healing and acclimatization. Kor. J. Hort. Sci. Technol. 31:14-23.
  7. Kim, C.K., J.Y. Oh, and S.J. Kang. 2001. Effect of plug cell size and seedling age on growth and yield of Chinese chives (Allium tuberosum R.). J. Kor. Soc. Hort. Sci. 42:167-170.
  8. Kim, S.E., M.H. Lee, B.J. Ahn, and Y.S. Kim. 2013. Effects of spacing and plug cell size on seedling quality and yield and qualities of tomatoes. Protected Hort. And Plant Factory 22: 256-261. https://doi.org/10.12791/KSBEC.2013.22.3.256
  9. Kim, Y.H. and H.S. Park. 2002. Growth of cucumber plug seedlings as affected by photoperiod and photosynthetic photon flux. J. Bio-Environ. Con. 11: 40-44.
  10. Kitaya, Y., G. Niu, T. Kozai, and M. Ohashi. 1998. Photosynthetic photon flux, photoperiod, and $CO_2$ concentration affect growth and morphology of lettuce plug transplants. HortScience 33: 988-991.
  11. Kozai, T. 2012. Plant factory with artificial light. Ohmsha, Tokyo. (in Janpanese)
  12. Kozai, T., C. Kubota, C.Chun, F. Afreen, and K. Ohyama. 2000. Necessity and concept of the closed transplant production system, in: Kubota, C., Chun, C. (Eds.), Transplant production in the 21st century. Kluwer Academic Publisher, Dordrecht, pp. 3-19.
  13. Lambers, H., F.S. Chapin III, and T.L. Pons. 2008. Plant physiological ecology. 2nd ed. Springer Science & Media. p169.
  14. Lee, J.M., C. Kubota, S.J. Tsao, Z. Bie, P. Hoyos Echevarria, L. Morra, and M. Oda. 2010. Current status of vegetable grafting: Diffusion, grafting techniques, automation. Scientia Hort. 127:93-105. https://doi.org/10.1016/j.scienta.2010.08.003
  15. Neto, N.B.M, S.M. Saturnino, D.C. Bomfim, and C.C. Custodio. 2004. Water stress induced by mannitol and sodium chloride in soybean cultivars. Brazilian archives of boil. and technol. 47:521-529.
  16. Park, Y.G., J.E. Park, S.J. Hwang, and B.R. Jeong. 2012. Light source and $CO_2$ oncentration affect growth and anthocyanin content of lettuce under controlled environment. Hort. Environ. Biotechnol. 53:460-466. https://doi.org/10.1007/s13580-012-0821-9
  17. Rural Development Administration (RDA), Republic of Korea. 2008. Vegetable transplant production (The textbook for farming no. 86). RDA, Suwon.
  18. Shin, Y.A., K.Y. Kim, Y.C. Kim, T.C. Seo, J.H. Chung, and H.Y. Pak. 2000. Effect of cell size and seedling age on seedling quality and early growth after transplanting of red pepper. J. Kor. Soc. Hort. Sci. 41:49-52.
  19. Um, Y.C., Y.A. Jang, J.G. Lee, S.Y. Kim, S.R. Cheong, S.S. Oh, S.H. Cha, and S.C. Hong. 2009. Effects of selective light sources on seedling quality of tomato and cucumber in closed nursery system. J. Bio-Environ. Con. 18: 370-376.