DOI QR코드

DOI QR Code

Effects of Carbonation on the Microstructure of Cement Materials: Influence of Measuring Methods and of Types of Cement

  • Pham, Son Tung (Laboratory of Civil Engineering and Mechanical Engineering, National Institute of Applied Sciences) ;
  • Prince, William (Laboratory of Civil Engineering and Mechanical Engineering, National Institute of Applied Sciences)
  • Received : 2014.01.30
  • Accepted : 2014.05.07
  • Published : 2014.12.30

Abstract

The objective of this work was to examine the influence of carbonation on the microstructure of cement materials. Different materials, which were CEM I mortar and paste, CEM II mortar and paste, were carbonated at $20^{\circ}C$, 65 % relative humidity and 20 % of $CO_2$ concentration. The specific surface area and pore size distribution were determined from two methods: nitrogen adsorption and water adsorption. The results showed that: (1) nitrogen adsorption and water adsorption do not cover the same porous domains and thus, we observed conflicts in the results obtained by these two techniques; (2) the CEM II based materials seemed to be more sensible to a creation of mesoporosity after carbonation than the CEM I based materials. The results of this study also helped to explain why observations in the literature diverge greatly on the influence of carbonation on specific surface area.

Keywords

References

  1. Arandigoyen, M., Bicer-Simsir, B., Alvarez, J. I., & Lange, D. A. (2006). Variation of microstructure with carbonation in lime and blended pastes. Applied Surface Science, 252, 7562-7571. https://doi.org/10.1016/j.apsusc.2005.09.007
  2. Baltakys, K., Jauberthie, R., Siauciunas, R., & Kaminskas, R. (2007). Influence of modification of $SiO_{2}$ on the formation of calcium silicate hydrate. Materials Science-Poland, 25(3), 663-670.
  3. Bier, T. A., Kropp, J., Hilsdorf, H. K. (1987). Carbonation and realkalinization of concrete and hydrated cement paste. In: J. C. MASO (Ed.), Durability of construction materials (pp. 927-934, volume 3). London, UK: RILEM, Chapman & Hall Publishers.
  4. Borges, P. H. R., Costa, J. O., Milestone, N. B., Lynsdale, C. J., & Streatfield, R. E. (2010). Carbonation of CH and C-S-H in composite cement pastes containing high amounts of BFS. Cement and Concrete Research, 40, 284-292. https://doi.org/10.1016/j.cemconres.2009.10.020
  5. Brunauer, S., Emmett, P. H., & Teller, E. (1938). Adsorption of gases in multimolecular layers. Journal of American Chemical Society, 60, 309-319. https://doi.org/10.1021/ja01269a023
  6. Chen, J. J., Thomas, J. J., & Jennings, H. M. (2006). Decalcification shrinkage of cement paste. Cement and Concrete Research, 36, 801-809. https://doi.org/10.1016/j.cemconres.2005.11.003
  7. Chindaprasirt, P., & Rukzon, S. (2009). Pore structure changes of blended cement pastes containing fly ash, rice husk ash, and palm oil fuel ash caused by carbonation. Journal of Materials in Civil Engineering, 21(11), 666-671. https://doi.org/10.1061/(ASCE)0899-1561(2009)21:11(666)
  8. Christophe, C., (2006). La carbonatation. Le Magazine Beton[s], Volume 2, Pages 53-54.
  9. Da Silva, C. A. R., Reis, R. J. P., Lameiras, F. S., & Vasconcelos, W. L. (2002). Carbonation-related microstructural changes in long-term durability concrete. Materials Research, 5(3), 287-293. https://doi.org/10.1590/S1516-14392002000300012
  10. Darkhmouche, F. Z. (2009). Carbonatation des beton adjuvants a base de ressources locales algeriennes. These de Doctorat, Universite d'Orleans, Orleans, France.
  11. De Belie, N., Kratky, J., & Van Vlierberghe, S. (2010). Influence of pozzolans and slag on the microstructure of partially carbonated cement paste by means of water vapour and nitrogen sorption experiments and BET calculations. Cement and Concrete Research, 40, 1723-1733. https://doi.org/10.1016/j.cemconres.2010.08.014
  12. Drouet, E. (2010). Impact de la temperature sur la carbonatation des materiaux cimentaires-Prise en compte des transferts hydriques. These de Doctorat, Ecole Normale Superieure de Cachan, Cachan, France.
  13. Eitel, W. (1966). Silicate science: Ceramics and hydraulic binders. New York, NY: Academic press.
  14. Hiromitu, N., & Masako, H. (1991). Analysis of adsorption isotherms of water vapour for nonporous and porous adsorbents. Journal of Colloid and Interface Science, 145(2), 405-412. https://doi.org/10.1016/0021-9797(91)90371-E
  15. Hyvert, N. (2009). Application de l'approche probabiliste a la durabilite des produits prefabriques en beton. These de Doctorat, Universite Paul Sabatier-Toulouse III, Toulouse, France.
  16. Jaafar, W. (2003). Influence de la carbonatation sur la porosite et la permeabilite des betons, Diplome d'etudes approfondies (Master of advanced studies). Paris, France: Laboratoire Central des Ponts et Chaussees.
  17. Johannesson, B., & Utgenannt, P. (2001). Microstructutals changes caused by carbonation of cement mortar. Cement and Concrete Research, 31, 925-931. https://doi.org/10.1016/S0008-8846(01)00498-7
  18. Kim, S., Taguchi, S., Ohba, Y., Tsurumi, T., Sakai, E., & Daimon, M. (1995). Carbonation reaction of calcium hydroxide and calcium silicate hydrates. Journal of the Society of Inorganic materials, 2(254), 18-25.
  19. Miragliotta, R. (2000). Modelisation des processus physicochimiques de la carbonatation des betons prefabriques-Prise en compte des effets de paroi. These de Doctorat de l'Universite de la Rochelle, La Rochelle, France.
  20. Parrott, L. (1944). Moisture conditioning and transport properties of concrete test specimens. Materials and Structure, 27, 460-468.
  21. Rarick, R. L., Thomas, J. J., Christensen, B. J., & Jennings, H. M. (1996). Deterioration of the nitrogen BET surface area of dried cement paste with storage time. Advanced Cement Based Materials, 3, 72-75. https://doi.org/10.1016/1065-7355(95)00056-9
  22. Saillio, M. (2012). Interactions physiques et chimiques ionsmatrice dans les beton sains et carbonates-Influence sur le transport ionique. These de Doctorat, L'Universite Paris-Est Marne La Vallee, La Vallee, France.
  23. Sagawa, T., Nawa, T. (2007). Effect of curing condition and carbonation on hydration of blast furnace slag. Cement Concrete Research and Technology, 18(3), 23-35. (Issue 45). https://doi.org/10.3151/crt1990.18.3_23
  24. Suzuki, K., Nishikawa, T., & Ito, S. (1985). Formation and carbonation of C-S-H in water. Cement and Concrete Research, 15, 213-224. https://doi.org/10.1016/0008-8846(85)90032-8
  25. Tennis, P. D., & Jennings, H. M. (2000). A model for two types of calcium silicate hydrate in the microstructure of Portland cement pastes. Cement and Concrete Research, 30, 855-864. https://doi.org/10.1016/S0008-8846(00)00257-X
  26. Thierry, M. (2005). Modelling of atmospheric carbonation of cement based materials considering the kinetic effects and modifications of the microstructure. PhD Thesis, L'ecole nationale des ponts et chausses, Paris, France.
  27. Thomas, J. J., Hsieh, J., & Jennings, H. M. (1996). Effect of carbonation on the nitrogen BET surface area of hardened portland cement paste. Advanced Cement Based Materials, 3, 76-80. https://doi.org/10.1016/1065-7355(95)00057-7
  28. Zhang, Q., Ye, G., & Koenders, E. (2013). Investigation of the structure of heated Portland cement paste by using various techniques. Construction and Building Materials, 38, 1040-1050. https://doi.org/10.1016/j.conbuildmat.2012.09.071

Cited by

  1. Effect of CO2 Exposure on Mechanical Resistivity of Cement Pastes with Incorporated Ceramic Waste Powder vol.824, pp.None, 2014, https://doi.org/10.4028/www.scientific.net/msf.824.133
  2. Physical and Mechanical Properties of Cementitious Specimens Exposed to an Electrochemically Derived Accelerated Leaching of Calcium vol.9, pp.3, 2015, https://doi.org/10.1007/s40069-015-0108-5
  3. The Erosion of Reinforced Concrete Walls by the Flow of Rainwater vol.11, pp.1, 2014, https://doi.org/10.1007/s40069-016-0177-0
  4. Synthesis and Characterization of the Blast Furnace Cinder-Based Geopolymer-Solidified Pile Mud vol.48, pp.4, 2019, https://doi.org/10.1520/jte20180438
  5. Optimization of Micro and Nano Palm Oil Fuel Ash to Determine the Carbonation Resistance of the Concrete in Accelerated Condition vol.12, pp.1, 2014, https://doi.org/10.3390/ma12010130
  6. Determination of hygrothermal properties of cementitious mortar: The effect of partial replacement of cement by incinerated sewage sludge ash vol.42, pp.6, 2014, https://doi.org/10.1177/1744259118791202
  7. Physicochemical Properties of Hydrated Portland Cement Blended with Rice Husk Ash vol.2020, pp.None, 2014, https://doi.org/10.1155/2020/5304745
  8. Understanding the carbonation of concrete with supplementary cementitious materials: a critical review by RILEM TC 281-CCC vol.53, pp.6, 2020, https://doi.org/10.1617/s11527-020-01558-w
  9. CO2 Treatment of Hydrated Cement Powder: Characterization and Application Consideration vol.33, pp.4, 2021, https://doi.org/10.1061/(asce)mt.1943-5533.0003652