DOI QR코드

DOI QR Code

A model of the formation of fish-bone vein system in the Buan area

부안지역 어골형 광맥계의 형성모델

  • 박승익 (한국지질자원연구원 국토지질연구본부) ;
  • 권창우 (한국지질자원연구원 국토지질연구본부)
  • Received : 2014.08.12
  • Accepted : 2014.10.06
  • Published : 2014.12.31

Abstract

This paper reports a unique vein system observed in a pyroclastic rock of the Buan area. The vein system, named here as 'fish-bone vein system' on the basis of the geometric feature, is characterized by mutually subperpendicular relationship between set 1 and set 2 veins. It is interpreted to be a hydrofracture system caused by rapid emplacement of pyroclastic density current, disequilibrium compaction, and subsequent increase in pore fluid pressure at depth. The hydrofractures do not penetrate through a boundary between different eruption units, possibly due to its role as a mechanical discontinuity or spatial variation in pore pressure buildup. The mechanical explanation based on isotropic elasticity theory and macroscopic Griffith failure criterion suggests that the development of the fish-bone vein system is controlled by 1) Poisson's ratio of wall rock, 2) differential stress, 3) fluid pressure along primary hydrofractures, and 4) secondary buildup of pore fluid pressure due to interaction between fracture fluid and wall rock.

본 논문에서는 부안지역 화산쇄설암에 발달하는 독특한 형태의 광맥계를 보고한다. 생선뼈의 형태와도 같은 이 광맥계는 서로 아수직한 광맥군 1과 광맥군 2의 교차에 의해 정의되며, 그 기하학적 특성에 근거하여 어골형 광맥계로 명명하였다. 어골형 광맥계는 주로 화쇄밀도류의 빠른 퇴적 및 비평형적 다짐작용 그리고 이에 의해 심부에 야기된 공극유압 상승과 관련되어 형성된 수압단열계로 해석된다. 이 수압단열들은 화산분출단위 간 경계면을 가로지르지 못하는데, 이는 지층 내 공극유압의 공간적 변이 혹은 분출단위 간 경계면이 가지는 역학적 불연속성에 기인할 가능성이 높다. 등방성 탄성이론 및 거시적 그리피스 파괴기준에 근거한 역학적 설명은 1) 모암의 포아송비, 2) 축차응력과 더불어 3) 일차적으로 형성된 수압단열 내 유체압 및 4) 이에 의해 모암에 이차적으로 발생되는 공극유압 상승이 어골형 광맥계의 발달을 제어하는 주요 요인임을 제안한다.

Keywords

Acknowledgement

Grant : 지질도폭 조사연구

Supported by : 한국지질자원연구원

References

  1. Banks, D.A., Davies, G.R., Yardley, B.W.D., McCaig, A.M. and Grant, N.T., 1991, The chemistry of brines from an Alpine thrust system in the Central Pyrenees-an application of fluid inclusion analysis to the study of fluid behavior in orogenesis. Geochimica et Cosmochimica Acta, 55, 1,021-1,030. https://doi.org/10.1016/0016-7037(91)90160-7
  2. Becker, A. and Gross, M., 1996, Mechanism for joint saturation in mechanically layered rocks: an example from southern Israel. Tectonophysics, 257, 223-237. https://doi.org/10.1016/0040-1951(95)00142-5
  3. Bons, P.D., 2000, The formation of veins and their microstructures. In: Jessell, M.W., Urai, J.L. (Eds.), Stress, Strain and Structure, A Volume in Honour of W D Means. Journal of the Virtual Explorer (on-line).
  4. Bons, P.D., Elburg, M.A. and Gomez-Rivas, E., 2012, A review of the formation of tectonic veins and their microstructures. Journal of Structural Geology, 43, 33-62. https://doi.org/10.1016/j.jsg.2012.07.005
  5. Branney, M.J. and Kokelaar, B.P., 2002, Pyroclastic Density Currents and the Sedimentation of Ignimbrites. The Geological Society of London Memoir, 27, 143 p.
  6. Brenner, S.L. and Gudmundsson, A., 2004, Arrest and aperture variation of hydrofractures in layered reservoirs. In: Cosgrove, J.W. and Engelder, T. (Eds.), The initiation, propagation, and arrest of joints and other fractures, The Geological Society of London Special Publication, 231, 117-128. https://doi.org/10.1144/GSL.SP.2004.231.01.08
  7. Cas, R.A.F. and Wright, J.V., 1987, Volcanic Successions: Modern and Ancient. Allen and Unwin, London, 528 p.
  8. Chuprakov, D., Melchaeva, O. and Prioul, R., 2013, Hydraulic fracture propagation across a weak discontinuity controlled by fluid injection. In: Bunger, A.P., McLennan, J. and Jeffrey, R. (Eds.), Effective and Sustainable Hydraulic Fracturing, InTech, 157-181.
  9. Ciancia, M. and Heiken, G., 2006, Geotechnical properties of tuffs at Yucca Mountain, Nevada. In: Heiken, G. (Eds.), Tuffs: Their Properties, Uses, Hydrology, and Resources. The Geological Society of America Special Paper, 408, 33-89.
  10. Collettini, C., De Paola, N. and Goulty, N.R., 2006, Switches in the minimum compressive stress direction induced by overpressure beneath a low-permeability fault zone. Terra Nona, 18, 224-231. https://doi.org/10.1111/j.1365-3121.2006.00683.x
  11. Cooke, M.L. and underwood, C.A., 2001, Fracture termination and step-over at bedding interfaces due to frictional slip and interface opening. Journal of Structural Geology, 23, 223-238. https://doi.org/10.1016/S0191-8141(00)00092-4
  12. Cox, S.F., 1987, Antitaxial crack-seal vein microstructures and their relationship to displacement paths. Journal of Structural Geology, 9, 779-787. https://doi.org/10.1016/0191-8141(87)90079-4
  13. Cox, S.F., 2010, The application of failure mode diagrams for exploring the roles of fluid pressure and stress states in controlling styles of fracture-controlled permeability enhancement in faults and shear zones. Geofluid, 10, 217-233.
  14. Durney, D.W. and Ramsay, J.G., 1973, Incremental strains measured by syntectonic crystal growths. In: De Jong, K.A. and Scholten, K. (Eds.), Gravity and Tectonics. Wiley, New York, 67-96.
  15. Etheridge, M.A., 1983, Differential stress magnitudes during regional deformation and metamorphism: upper bound imposed by tensile fracturing. Geology, 11, 231-234. https://doi.org/10.1130/0091-7613(1983)11<231:DSMDRD>2.0.CO;2
  16. Fisher, D.M. and Brantley, S.L., 1992, Models of quartz overgrowth and vein formation: deformation and episodic fluid flow in an ancient subduction zone. Journal of Geophysical Research, 97, 20,043-20,061. https://doi.org/10.1029/92JB01582
  17. Grauls, D., 1999, Overpressures: Causal Mechanisms, Conventional and Hydromechanical Approaches. Oil & Gas Science and Technology, 54, 667-678. https://doi.org/10.2516/ogst:1999056
  18. Gudmundsson, A., 2011, Rock Fractures in Geological Processes. Cambridge, 578 p.
  19. Gudmundsson, A. and Brenner, S.L., 2001, How hydrofractures become arrested. Terra Nova, 13, 456-462. https://doi.org/10.1046/j.1365-3121.2001.00380.x
  20. Gudmundsson, A., Fjeldskaar, I. and Brenner, S.L., 2002, Propagation pathways and fluid transport of hydrofractures in jointed and layered rocks in geothermal fields. Journal of Volcanology and Geothermal Research, 116, 257-278. https://doi.org/10.1016/S0377-0273(02)00225-1
  21. Hancock, P.L., 1985, Brittle microtectonics: principles and practice. Journal of Structural Geology, 7, 437-457. https://doi.org/10.1016/0191-8141(85)90048-3
  22. Hanmer, S.K., 1982, Vein arrays as kinematic indicators in kinked anisotropic materials. Journal of Structural Geology, 4, 151-160. https://doi.org/10.1016/0191-8141(82)90024-4
  23. Jaeger, J.C., Cook, N.G.W. and Zimmerman, R.W., 2007, Fundamentals of Rock Mechanics. Blackwell, 475 p.
  24. Jiao, J.J. and Zheng, C., 1998, Abnormal fluid pressures caused by deposition and erosion of sedimentary basins. Journal of Hydrology, 204, 124-137. https://doi.org/10.1016/S0022-1694(97)00115-7
  25. Kirschner, D.L., Sharp, Z.D. and Masson, H., 1995, Oxygen isotope thermometry of quartz-calcite veins: unravelling the thermal-tectonic history of the subgreenschist facies Morcles nappe (Swiss Alps). Geological Society of America Bulletin, 107, 1,145-1,156. https://doi.org/10.1130/0016-7606(1995)107<1145:OITOQC>2.3.CO;2
  26. Kirschner, D.L., Sharp, Z.D. and Teyssier, C., 1993, Vein growth mechanisms and fluid sources revealed by oxygen isotope laser microprobe. Geology, 21, 85-88. https://doi.org/10.1130/0091-7613(1993)021<0085:VGMAFS>2.3.CO;2
  27. Koehn, D. and Passchier, C.W., 2000, Shear sense indicators in striped bedding-veins. Journal of Structural Geology, 22, 1,141-1,151. https://doi.org/10.1016/S0191-8141(00)00028-6
  28. Koh, H.J., Kwon, C.W., Park, S.-I., Park, J. and Kee, W.-S., 2013, Geological Report of the Julpo and Wido-Hawangdeungdo sheets (1:50,000). Korea Institute of Geoscience and Mineral Resources, 81 p (in Korean with English abstract).
  29. Lee, Y.J., Wiltschko, D.V., Grossman, E.L., Morse, J.W. and Lamb, W.M., 1997, Sequential vein growth with fault displacement: an example from the Austin Chalk formation, Texas. Journal of Geophysical Research-Solid Earth, 102, 22,611-22,628. https://doi.org/10.1029/97JB01945
  30. Mandl, 2005, Rock Joints: The Mechanical Genesis. Springer, 221 p.
  31. McCuaig, T.C. and Kerrich, R.W., 1998, P-T-t-deformation-fluid characteristics of lode gold deposits: evidence from alteration systematics. Ore Geology Reviews, 12, 381-453.
  32. McDermott, C.I., Edlmann, K. and Haszeldine, R.S., 2013, Predicting hydraulic tensile fracture spacing in strata-bound systems. International Journal of Rock Mechanics and Mining Sciences, 63, 39-49. https://doi.org/10.1016/j.ijrmms.2013.06.004
  33. Nunn, J.A., 1996, Buoyancy-driven propagation of isolated fluid-filled fractures: Inplications for fluid transport in Gulf of Mexico geopressured sediments. Journal of Geophysical Research, 101, 2,963-2,970. https://doi.org/10.1029/95JB03210
  34. Osborne, M.J. and Swarbrick, R.E., 1997, Mechanisms for generating overpressure in sedimentary basins: a reevaluation. American Association of Petroleum Geologists Bulletin, 81, 1,023-1,041.
  35. Philipp, S.L., Afsar, F. and Gudmundsson, A., 2013, Effects of mechanical layering on hydrofracture emplacement and fluid transport in reservoirs. Frontiers in Earth Science, 1, 1-19.
  36. Price, R.H., 1983, Analysis of Rock Mechanics Properties of Volcanic Tuff Units from Yucca Mountain, Nevada Test Site. Sandia National Laboratories. 80 p.
  37. Schultz, R.A. and Fossen, H., 2002, Displacement-length scaling in three dimensions: the omportance of aspect ratio and application to deformation bands. Journal of Structural Geology, 24, 1,389-1,411. https://doi.org/10.1016/S0191-8141(01)00146-8
  38. Secor, D.T., 1965, Role of fluid pressure in jointing. American Journal of Science, 263, 633-646. https://doi.org/10.2475/ajs.263.8.633
  39. Sibson, R.H., 1981, Controls on low-stress hydro-fracture dilatancy in thrust, wrench and normal fault terrains. Nature, 289, 665-667. https://doi.org/10.1038/289665a0
  40. Sibson, R.H., 1998, Brittle failure mode plots for compressional and extensional tectonic regimes. Journal of Structural Geology, 20, 655-660. https://doi.org/10.1016/S0191-8141(98)00116-3
  41. Smith, J.V., 1996, Geometry and kinematics of convergent conjugate vein array systems. Journal of Structural Geology, 18, 1,291-1,300. https://doi.org/10.1016/S0191-8141(96)00053-3
  42. Terzaghi, K., 1943, Theoretical soil mechanics. Chapman and Hall, New York, 510 p.
  43. Twiss, R.J. and Moores, E.M., 2007, Structural Geology. Freeman, New York, 736 p.
  44. Wohletz, K., 2006, Fractures in welded tuff. In: Heiken, G. (Eds.), Tuffs: Their Properties, Uses, Hydrology, and Resources. Geological Society of America, Special Paper 408, 17-31.
  45. Zang, A. and Stephansson, O., 2010, Stress Field of the Earth's Crust. Springer, 276 p.

Cited by

  1. Geoheritages and geosites of the Gochang-gun and the Buan-gun areas, Korea vol.52, pp.5, 2014, https://doi.org/10.14770/jgsk.2016.52.5.691