DOI QR코드

DOI QR Code

Effects of pre-corrosion and cathodic protection in artificial seawater on S-N fatigue behavior of X80 steel

인공해수 환경에서의 표면부식 및 전기방식이 X80 강재의 S-N 피로거동에 미치는 영향

  • Kwon, Jae Ki (Mineral Resources Research Division, Korea Institute of Geoscience & Mineral Resources) ;
  • Ahn, Doo Hong (Department of Metallurgical and Materials Engineering, ReCAPT, Gyeongsang National University) ;
  • Jeong, Dae Ho (Department of Metallurgical and Materials Engineering, ReCAPT, Gyeongsang National University) ;
  • Kim, Young Ju (Mineral Resources Research Division, Korea Institute of Geoscience & Mineral Resources) ;
  • Woo, Nam Sub (Mineral Resources Research Division, Korea Institute of Geoscience & Mineral Resources) ;
  • Kim, Sangshik (Department of Metallurgical and Materials Engineering, ReCAPT, Gyeongsang National University)
  • 권재기 (한국지질자원연구원 광물자원연구본부) ;
  • 안두홍 (경상대학교 금속재료공학과) ;
  • 정대호 (경상대학교 금속재료공학과) ;
  • 김영주 (한국지질자원연구원 광물자원연구본부) ;
  • 우남섭 (한국지질자원연구원 광물자원연구본부) ;
  • 김상식 (경상대학교 금속재료공학과)
  • Received : 2013.12.30
  • Published : 2014.10.05

Abstract

The effects of pre-corrosion and applied potentials in artificial seawater on the S-N fatigue behavior of X80 steel were examined. The X80 specimens were pre-corroded in a $FeCl_3$ solution for varying immersion times ranging from 0 to 96 h and subsequently S-N fatigued in air. It was found that the resistance to S-N fatigue decreased abruptly with 1 h immersion, while it became saturated with a further increase in immersion time. The trend observed in this study was relatively well explained by the stress concentration effect from the presence of corrosion damage on the surface. The in-situ S-N fatigue tests were also conducted on X80 steel in artificial seawater under applied potentials of -600, -850 and -1,050 mV (SCE). The fractographic and micrographic analyses were conducted on the fatigue specimens to identify the optimum cathodic protection conditions.

Keywords

Acknowledgement

Grant : Drill Riser System 기술 개발

Supported by : 한국연구재단

References

  1. W. Wang, Y. Shan, and K. Yang, Mater. Sci. Eng. A 502, 38 (2009). https://doi.org/10.1016/j.msea.2008.10.042
  2. S. Y. Shin, S. M. Hong, J. H. Bae, K. S. Kim, and S. H. Lee, J. Kor. Inst. Met. & Mater. 47, 155 (2009).
  3. Y. Wang, W. Zhao, H. Ai, X. Zhou, and T. Zhang, Corros. Sci. 53, 2761 (2011). https://doi.org/10.1016/j.corsci.2011.05.011
  4. R. F. d. Silva, F. A. F. Teofilo, E. Parente Jr., A. M. C. d. Melo, and A. S. d. Holanda, Mar. Struct. 33, 1 (2013). https://doi.org/10.1016/j.marstruc.2013.04.002
  5. M. Katsumi and O. Kenji, JFE Technology Report No. 18, Steel products for Energy Industries (2013).
  6. Y. Bai and Q. bai, Subsea Pipelines and Risers, Elsevier, Kidlington (2005).
  7. J. K. Kwon, Y. J. Kim, S. Z. Han, M. Goto, and S. S. Kim, Met. Mater. Int. 15, 925 (2009). https://doi.org/10.1007/s12540-009-0925-7
  8. Y. J. Kim, J. K. Kwon, H. J. Lee, W. K. Jang, J. K. Choi, and S. S. Kim, Metall. Trans. A 42, 986 (2011). https://doi.org/10.1007/s11661-010-0577-8
  9. S. K. Kim, S. S. Kim, K. K. Park, K. M. Noh, and K. A. Lee, Korean J. Met. Mater. 51, 629 (2013). https://doi.org/10.3365/KJMM.2013.51.9.629
  10. Y. Xiang and Y. Liu, Eng. Fract. Mech. 77, 1314 (2010). https://doi.org/10.1016/j.engfracmech.2010.03.018
  11. E. Cirik and K. Genel, Surf. Coat. Technol. 202, 5190 (2008). https://doi.org/10.1016/j.surfcoat.2008.06.049
  12. K. M. Gruenberg, B. A. Craig, B. M. Hillberry, R. J. Bucci, and A. J. Hinkle, Int. J. Fatigue, 26, 615 (2004). https://doi.org/10.1016/j.ijfatigue.2003.10.010
  13. Q. Y. Wang, N. Kawagoishi, and Q. Chen, Scr. Mater. 49, 711 (2003). https://doi.org/10.1016/S1359-6462(03)00365-8
  14. M. Shahzad, M. Chaussumier, R. Chieragatti, C. Mabru, and F. Rezai-Aria, Procedia Engineering, 2, 1015 (2010). https://doi.org/10.1016/j.proeng.2010.03.110
  15. K. K. Sankaran, R. Perez, and K. V. Jata, Mater. Sci. Eng. A 297, 223 (2001). https://doi.org/10.1016/S0921-5093(00)01216-8
  16. M. Ziomek-Moroz, S. Bullard, K. Rozman, and J. J. Kruzic, ECS Trans. 35, 11 (2011).
  17. R. G. J. Ddyvean, C. J. Thomas, and R. Brook, Biodeterioration 7, 385 (1988).
  18. M. A. Salau, D. E. Esezobor, and M. F. Omotoso, Pet. Coal, 53, 291 (2011).
  19. D. P. Baxter, S. J. Maddox, and R. J. Pargeter, 26th International Conference Offshore Mechanics and Arctic Engineering (OMAE 2007-29360).
  20. NORSOK, Materials Selection, NORSOK Standard M-503, Rev. 2 (1997).
  21. C. Lindley and W. J. Rudd, Mar. Struct. 14, 397 (2001). https://doi.org/10.1016/S0951-8339(00)00048-4
  22. J. Billingham, J. V. Sharp, J. Spurrier, and P. J. Kilgallon, Research Report 105, Review of the Performance of high Strength Steels used Offshore, Health and Safety Executive (HSE) Books, Cranfield (2003).
  23. DNV, Fatigue Design of Offshore Steel Structure, DNVRP-C203 (2010).
  24. British Standard, Guide to Methods for Assessing the Acceptability of Flaws in Metallic Structures, British Standards Institution (BSI), BS 7910, London (2005).
  25. K. Genel, M. Demirkol, and T. Gulmez, Mater. Sci. Eng. A 288, 91 (2000). https://doi.org/10.1016/S0921-5093(00)00835-2
  26. B. Huneau and J. Mendez, Mater. Sci. Eng. A 345, 14 (2003). https://doi.org/10.1016/S0921-5093(02)00099-0
  27. C. Lindley and W. J. Rudd, Mar. Struct. 14, 397 (2001). https://doi.org/10.1016/S0951-8339(00)00048-4
  28. D. H. Jung, J. K. Kwon, N. S. Woo, Y. J. Kim, M. Goto, and S. S. Kim, Metall. Trans. A 45, 654 (2014). https://doi.org/10.1007/s11661-013-2012-4
  29. W. Zhao, Y. Wang, T. Zhang, and Y. Wang, Corros. Sci. 57, 99 (2012). https://doi.org/10.1016/j.corsci.2011.12.029
  30. ASTM Standard G48, Standard Test Methods for Pitting and Crevice Corrosion Resistance of Stainless Steel and Related Alloys by Use of Ferric Choride Solution, Annual book of ASTM standards, vol. 03.02 (2002).
  31. ASTM Standard G5, Standard Reference Test Method for Making Potentiostatic and Potentiodynamic Anodic Polarization Measurements, Annual Book of ASTM Standards, vol. 03.02 (2002).
  32. ASTM Standard D1141, Standard Specification for Substitute Ocean Water, Annual book of ASTM standards, vol. 11.02 (1990).
  33. ASTM Standard E466, Standard Practice for Conduction Force controlled Constant Amplitude Axial Fatigue Test of Metallic Materials, Annual book of ASTM standards, vol. 03.01 (2002).
  34. C. S. Wiesner, S. J. Maddox, W. Xu, G. A. Webster, F. M. Burdekin, R. M Andrew, and J. D. Harrison, Inter. J. Press. Ves. Pip. 77, 883 (2000). https://doi.org/10.1016/S0308-0161(01)00011-4
  35. E. Rezig, P. E. Irving, and M. J. Robinson, Procedia Engineering, 2, 387 (2010). https://doi.org/10.1016/j.proeng.2010.03.043
  36. S. S. Kim, J. T. Burns, and R. P. Gangloff, Eng. Fract. Mech. 76, 651 (2009). https://doi.org/10.1016/j.engfracmech.2008.11.005
  37. Y. Xiang and Y. Liu, Eng. Fract. Mech. 77, 1314 (2010). https://doi.org/10.1016/j.engfracmech.2010.03.018
  38. J. K. Kwon, D. H. Jeong, Y. S. Yoon, N. S. Woo, Y. J. Kim, M. Goto, and S. S. Kim, Met. Mater. Int. A (In press).
  39. E. E. Smith III and D. J. Duquette, Metall. Trans. A 17, 339 (1986).