DOI QR코드

DOI QR Code

Graded Barrier AlGaN/AlN/GaN Heterostructure for Improved 2-Dimensional Electron Gas Carrier Concentration and Mobility

  • Received : 2014.03.03
  • Accepted : 2014.05.28
  • Published : 2014.11.20

Abstract

This paper presents an approach of compositional grading of the barrier in AlGaN/GaN quantum well heterostructure to achieve high two dimensional electron gas (2DEG) carrier concentration and mobility for RF power amplifier applications. Plasma assisted Molecular Beam Epitaxy (PAMBE) has been used to grow compositionally graded AlGaN/GaN and AlGaN/AlN/GaN heterostructures. In-situ cathodoluminescence (CL) and ex-situ high resolution x-ray diffraction (HRXRD) along with high resolution transmission electron microscopy (HRTEM) techniques were used to study the compositions and thicknesses of grown heterostructures. Ohmic contact formation for all the samples were found to be challenging due to unusual surface behavior and thus addressed with three different metallization schemes. The graded AlGaN/GaN and AlGaN/AlN/GaN heterostructures show 2DEG carrier concentrations of $2.0{\times}10^{13}cm^{-2}$ and $2.3{\times}10^{13}cm^{-2}$ with carrier mobility of $764cm^2v^{-1}s^{-1}$ and $960cm^2v^{-1}s^{-1}$, respectively at room temperature. A performance index has been proposed to correlate the obtained results with its suitability for particular RF applications.

Keywords

References

  1. M. S. Shur, Solid-State Electron. 42, 2131 (1998). https://doi.org/10.1016/S0038-1101(98)00208-1
  2. H. Morkoc, A. Di Carlo, and R. Cingolani, Solid-State Electron. 46, 157 (2002). https://doi.org/10.1016/S0038-1101(01)00271-4
  3. Y. F. Wu, B. P. Keller, P. Fini, S. Keller, T. J. Jenkins, L. T. Kehias, S. P. Denbaars, and U. K. Mishra, IEEE Electron Device Lett. 19, 50 (1998). https://doi.org/10.1109/55.658600
  4. U. K. Mishra and Y. F. Yu, IEEE Trans. Microwave Theory Tech. 46, 456 (1998).
  5. S. Arulkumaran, T. Egawa, H. Ishikawa, and T. Jimbo, Appl. Phys. Lett. 80, 2186 (2002). https://doi.org/10.1063/1.1461420
  6. O. Ambacher, B. Foutz, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, A. J. Sierakowski, W. J. Schaff, L. F. Eastman, R. Dimitrov, A. Mitchell, and M. Stutzmann, J. Appl. Phys. 87, 334 (2000). https://doi.org/10.1063/1.371866
  7. K. Kohler, S. Muller, R. Aidam, P. Waltereit, W. Pletschen, L. Kirste, H. P. Menner, W. Bronner, A. Leuther, R. Quay, M. Mikulla, O. Ambacher, R. Granzner, F. Schwierz, C. Buchheim, and R. Goldhahn, J. Appl. Phys. 107, 053711 (2010). https://doi.org/10.1063/1.3319585
  8. S. W. Kaun, P. G. Burke, M. H. Wong, E. C. H. Kyle, U. K. Mishra, and J. S. Speck, Appl. Phys. Lett. 101, 262102 (2012). https://doi.org/10.1063/1.4773510
  9. S. Arulkumaran, T. Egawa, H. Ishikawa, and T. Jimbo, J. Vac. Sci. Technol. B 21, 888 (2003). https://doi.org/10.1116/1.1556398
  10. J. Liu, Y. Zhou, R. Chu, Y. Cai, K. J. Chen, and K. M. Lau, IEEE Electron Device Lett. 26, 145 (2005). https://doi.org/10.1109/LED.2005.843218
  11. P. Das, P. Banerji, and D. Biswas, Compound Semiconductor MANTECH: Digest of Papers, p. 12.7, CS MANTECH Incorporated, Boston, Massachusetts, USA (2012).
  12. P. Javorka, Ph. D. Thesis, Fabrication and Characterization of AlGaN/GaN High Electron Mobility Transistors, p. 72, Institute of Thin Films and Interfaces, Research Centre Juelich, Juelich, Germany (2004).
  13. W. Lu, V. Kumar, E. L. Piner, and I. Adesida, IEEE Trans. Electron Devices 50, 1069 (2003). https://doi.org/10.1109/TED.2003.812083
  14. D. GuoJian, G. LiWei, X. ZhiGang, C. Yao, X. PeiQiang, J. HaiQiang, Z. JunMing, and C. Hong, Sci. China Ser. G 53, 49 (2010). https://doi.org/10.1007/s11433-010-0083-4
  15. P. S. Park, D. N. Nath, S. Krishnamoorthy, and S. Rajan, Appl. Phys. Lett. 100, 063507 (2012). https://doi.org/10.1063/1.3685483
  16. X. Wang, C. Wang, G. Hu, H. Xiao, C. Fang, J. Wang, J. Ran, J. Li, J. Li, and Z. Wang, J. Cryst. Growth 298, 791 (2007). https://doi.org/10.1016/j.jcrysgro.2006.10.217
  17. P. Das and D. Biswas, AIP Conf. Proc. 1591, 1449 (2014).
  18. J. Su, H. Li, S. Lee, B. Krishnan, D. Lee, G. Papasouliotis, and A. Paranjpe, 2013 CS Mantech Digest, p. 285, GaAs Mantech Incorporated, New Orleans, Louisiana, USA (2013).
  19. Z. Liu, M. Sun, H. S. Lee, M. Heuken, and T. Palacios, Appl. Phys Express 6, 096502 (2013). https://doi.org/10.7567/APEX.6.096502
  20. V. Kirilyuk, P. R. Hageman, P. C. M. Christianen, F. D. Tichelaar, and P. K. Larsen, Phys. Stat. Sol. (b) 228, 563 (2001). https://doi.org/10.1002/1521-3951(200111)228:2<563::AID-PSSB563>3.0.CO;2-E
  21. Z. JinFeng, H. Yue, Z. JinCheng, and N. JinYu, Sci. China Ser F-Inf Sci. 51, 780 (2008). https://doi.org/10.1007/s11432-008-0056-7
  22. D. Zanato, S. Gokden, N. Balkan, B. K. Ridley, and W. J. Schaff, Semicond. Sci. Technol. 19, 427 (2004). https://doi.org/10.1088/0268-1242/19/3/024
  23. Q. Yan, P. Rinke, M. Scheffler, and C. G. Van de Walle, Appl. Phys. Lett. 95, 121111 (2009). https://doi.org/10.1063/1.3236533
  24. R. Rimeika, D. Ciplys, M. S. Shur, R. Gaska, M. A. Khan, and J. Yang, Phys. Stat. Sol. (b) 234, 897 (2002). https://doi.org/10.1002/1521-3951(200212)234:3<897::AID-PSSB897>3.0.CO;2-9
  25. P. Das and D. Biswas, J. Nano- and Electron. Phys. 3, 972 (2011).

Cited by

  1. HVPE 방법에 의해 성장된 graded AlGaN 에피층의 특성 vol.25, pp.2, 2014, https://doi.org/10.6111/jkcgct.2015.25.2.045
  2. Temperature-dependent DC characteristics of AlInN/GaN high-electron-mobility transistors vol.13, pp.4, 2014, https://doi.org/10.1007/s13391-017-1606-1
  3. Optimization of Graded AlInN/AlN/GaN HEMT Device Performance Based on Quaternary Back Barrier for High Power Application vol.6, pp.12, 2014, https://doi.org/10.1149/2.0131712jss
  4. An Alternative X-ray Diffraction Analysis for Comprehensive Determination of Structural Properties in Compositionally Graded Strained AlGaN Epilayers vol.14, pp.6, 2014, https://doi.org/10.1007/s13391-018-0074-6
  5. Design optimization of the graded AlGaN/GaN HEMT device performance based on material and physical dimensions vol.36, pp.2, 2014, https://doi.org/10.1108/mi-09-2018-0057