DOI QR코드

DOI QR Code

Effect of structure of PVDF membranes on the performance of membrane distillation

  • Chang, Hsu-Hsien (Department of Chemical and Materials Engineering, Tamkang University) ;
  • Tsai, Chih-Hao (Department of Chemical and Materials Engineering, Tamkang University) ;
  • Wei, Hao-Cheng (Department of Chemical and Materials Engineering, Tamkang University) ;
  • Cheng, Liao-Ping (Department of Chemical and Materials Engineering, Tamkang University)
  • Received : 2013.09.24
  • Accepted : 2014.01.22
  • Published : 2014.01.25

Abstract

A series of microporous PVDF membranes were prepared by isothermal immersionprecipitation of PVDF/TEP casting dopes in both soft and harsh coagulation baths. Morphologies of the membranes' top surfaces were found to depend strongly on the bath strength, which could be controlled by the TEP content in the bath. By changing the bath gradually from pure water to 70% TEP, the top surface evolved from a dense skin-like (asymmetric) to a totally open porous morphology (symmetric). The latter structure could similarly be obtained by precipitation of the same dope in an alcoholic bath, e.g., 1-butanol. Membrane distillation processes to desalt sodium chloride aqueous solutions were conducted using various prepared membranes and two commercial microporous membranes, PTFE (Toyo, Japan, code: J020A330R) and PVDF (GE, USA, code: YMJWSP3001). The permeation fluxes were compared and correlated with the morphologies of the tested membranes.

Keywords

References

  1. Adnan, S., Hoang, M., Wang, H.T. and Xie, Z.L. (2012), "Commercial PTFE membranes for membrane distillation application: Effect of microstructure and support material", Desalination, 284, 297-308. https://doi.org/10.1016/j.desal.2011.09.015
  2. Akbari, A., Hamadanian, M., Jabbari, V., Lehi, A.Y. and Bojaran, M. (2012), "Influence of PVDF concentration on the morphology, surface roughness, crystalline structure, and filtration separation properties of semicrystalline phase inversion polymeric membranes", Desalination and Water Treatment, 46(1-3), 96-106. https://doi.org/10.1080/19443994.2012.677524
  3. Banat, F.A. and Simandl, J. (1994), "Theoretical and experimental-study in membrane distillation", Desalination, 95(1), 39-52. https://doi.org/10.1016/0011-9164(94)00005-0
  4. Banat, F.A. and Simandl, J. (1998), "Desalination by membrane distillation: A parametric study", Separ. Sci. Technol., 33(2), 201-226. https://doi.org/10.1080/01496399808544764
  5. Calabro, V., Jiao, B.L. and Drioli, E. (1994), "Theoretical and experimental-study on membrane distillation in the concentration of orange juice", Ind. Eng. Chem. Res., 33(7), 1803-1808. https://doi.org/10.1021/ie00031a020
  6. Chang, H.H., Chen, S C., Lin, D.J. and Cheng, L.P. (2013), "Preparation of bi-continuous Nylon-66 porous membranes by coagulation of incipient dopes in soft non-solvent baths", Desalination, 313, 77-86. https://doi.org/10.1016/j.desal.2012.12.009
  7. Cheng, L.P. (1999), "Effect of temperature on the formation of microporous PVDF membranes by precipitation from 1-octanol/DMF/PVDF and water/DMF/PVDF systems", Macromolecules, 32(20), 6668-6674. https://doi.org/10.1021/ma990418l
  8. Essalhi, M. and Khayet, M. (2013), "Self-sustained webs of polyvinylidene fluoride electrospun nanofibers at different electrospinning times: 1. Desalination by direct contact membrane distillation", J. Membr. Sci., 433, 167-179. https://doi.org/10.1016/j.memsci.2013.01.023
  9. Findley, M.E. (1967), "Vaporization through Porous Membranes", Ind. Eng. Chem. Process Des. Develop., 6(2), 226-230. https://doi.org/10.1021/i260022a013
  10. Findley, M.E., Tanna, V.V., Rao, Y.B. and Yeh, C.L. (1969), "Mass and heat transfer relations in evaporation through porous membranes", Aiche J., 15(4), 483-489. https://doi.org/10.1002/aic.690150404
  11. Gryta, M. and Barancewicz, M. (2010), "Influence of morphology of PVDF capillary membranes on the performance of direct contact membrane distillation", J. Membr. Sci., 358(1-2), 158-167. https://doi.org/10.1016/j.memsci.2010.04.044
  12. Hou, D.Y., Dai, G.H., Wang, J., Fan, H., Zhang, L. and Luan, Z.K. (2012), "Preparation and characterization of PVDF/nonwoven fabric flat-sheet composite membranes for desalination through direct contact membrane distillation", Sep. Purif. Technol., 101, 1-10. https://doi.org/10.1016/j.seppur.2012.08.031
  13. Hou, D.Y., Wang, J., Sun, X.C., Ji, Z.G. and Luan, Z.K. (2012), "Preparation and properties of PVDF composite hollow fiber membranes for desalination through direct contact membrane distillation. Journal of Membrane Science, 405, 185-200.
  14. Kuo, C.Y., Lin, H.N., Tsai, H.A., Wang, D.M. and Lai, J.Y. (2008), "Fabrication of a high hydrophobic PVDF membrane via nonsolvent induced phase separation", Desalination, 233(1-3), 40-47. https://doi.org/10.1016/j.desal.2007.09.025
  15. Lai, C.L., Liou, R.M., Chen, S.H., Huang, G.W. and Lee, K.R. (2011), "Preparation and characterization of plasma-modified PTFE membrane and its application in direct contact membrane distillation", Desalination, 267(2-3), 184-192. https://doi.org/10.1016/j.desal.2010.09.024
  16. Lawson, K.W. and Lloyd, D.R. (1996a), "Membrane distillation. 1. Module design and performance evaluation using vacuum membrane distillation", J. Membr. Sci., 120(1), 111-121. https://doi.org/10.1016/0376-7388(96)00140-8
  17. Lawson, K.W. and Lloyd, D.R. (1996b), "Membrane distillation. 2. Direct contact MD", J. Membr. Sci., 120(1), 123-133. https://doi.org/10.1016/0376-7388(96)00141-X
  18. Lawson, K.W. and Lloyd, D.R. (1997), "Membrane distillation", J. Membr. Sci, 124(1), 1-25. https://doi.org/10.1016/S0376-7388(96)00236-0
  19. Liao, Y., Wang, R., Tian, M., Qiu, C.Q. and Fane, A.G. (2013), "Fabrication of polyvinylidene fluoride (PVDF) nanofiber membranes by electro-spinning for direct contact membrane distillation", J. Membr. Sci., 425-426, 30-39. https://doi.org/10.1016/j.memsci.2012.09.023
  20. Lin, D.J., Chang, C.L., Lee, C.K. and Cheng, L.P. (2006a), "Fine structure and crystallinity of porous Nylon 66 membranes prepared by phase inversion in the water/formic acid/Nylon 66 system", Eur. Polym. J., 42(2), 356-367. https://doi.org/10.1016/j.eurpolymj.2005.07.007
  21. Lin, D.J., Chang, C.L., Lee, C.K. and Cheng, L.P. (2006b), "Preparation and characterization of microporous PVDF/PMMA composite membranes by phase inversion in water/DMSO solutions", Eur Polym. J., 42(10), 2407-2418. https://doi.org/10.1016/j.eurpolymj.2006.05.008
  22. Lin, D.J., Chang, H.H., Chen, T.C., Lee, Y.C. and Cheng, L.P. (2006), "Formation of porous poly (vinylidene fluoride) membranes with symmetric or asymmetric morphology by immersion precipitation in the water/TEP/PVDF system", Eur. Polym. J., 42(7), 1581-1594. https://doi.org/10.1016/j.eurpolymj.2006.01.027
  23. Martinez, L. and Rodriguez-Maroto, J.M. (2008), "Membrane thickness reduction effects on direct contact membrane distillation performance", J. Membr. Sci., 312(1-2), 143-156. https://doi.org/10.1016/j.memsci.2007.12.048
  24. Pang, R.Z., Li, J.S., Wei, K.J., Sun, X.Y., Shen, J.Y., Han, W.Q. and Wang, L.J. (2011), "In situ preparation of Al-containing PVDF ultrafiltration membrane via sol-gel process", J. Colloid Interf. Sci., 364(2), 373-378. https://doi.org/10.1016/j.jcis.2011.09.001
  25. Phattaranawik, J., Jiraratananon, R. and Fane, A.G. (2003), "Heat transport and membrane distillation coefficients in direct contact membrane distillation", J. Membr. Sci., 212(1-2), 177-193. https://doi.org/10.1016/S0376-7388(02)00498-2
  26. Wang, X.Y., Zhang, L., Sun, D.H., An, Q.F. and Chen, H.L. (2009), "Formation mechanism and crystallization of poly(vinylidene fluoride) membrane via immersion precipitation method", Desalination, 236(1-3), 170-178. https://doi.org/10.1016/j.desal.2007.10.064
  27. Zhang, M., Zhang, A.Q., Zhu, B.K., Du, C.H. and Xu, Y.Y. (2008), "Polymorphism in porous poly(vinylidene fluoride) membranes formed via immersion precipitation process", J. Membr. Sci., 319(1-2), 169-175. https://doi.org/10.1016/j.memsci.2008.03.029
  28. hang, P.Y., Yang, H. and Xu, Z.L. (2012), "Preparation of polyvinylidene fluoride (PVDF) membranes via nonsolvent induced phase separation process using a tween 80 and H2O mixture as an additive", Ind. Eng. Chem. Res., 51(11), 4388-4396. https://doi.org/10.1021/ie201806v

Cited by

  1. Effluents from copper industry: Improvised techniques vol.6, pp.2, 2015, https://doi.org/10.12989/mwt.2015.6.2.103
  2. Effect of polar rotation on the formation of porous poly(vinylidene fluoride) membranes by immersion precipitation in an alcohol bath vol.513, 2016, https://doi.org/10.1016/j.memsci.2016.04.052
  3. Effects of bath temperature on the morphology and performance of EVOH membranes prepared by the cold-solvent induced phase separation (CIPS) method vol.134, pp.10, 2017, https://doi.org/10.1002/app.44553
  4. Using green solvent, triethyl phosphate (TEP), to fabricate highly porous PVDF hollow fiber membranes for membrane distillation vol.539, 2017, https://doi.org/10.1016/j.memsci.2017.06.002
  5. Effect of solvent on the dipole rotation of poly(vinylidene fluoride) during porous membrane formation by precipitation in alcohol baths vol.115, 2017, https://doi.org/10.1016/j.polymer.2017.03.044
  6. Morphological and hydrophobic modifications of PVDF flat membrane with silane coupling agent grafting via plasma flow for VMD of ethanol–water mixture vol.491, 2015, https://doi.org/10.1016/j.memsci.2015.05.024
  7. Preparation and characterization of PVDF/alkali-treated-PVDF blend membranes vol.7, pp.5, 2016, https://doi.org/10.12989/mwt.2016.7.5.417
  8. Comparative study of air gap, direct contact and sweeping gas membrane distillation configurations vol.7, pp.1, 2016, https://doi.org/10.12989/mwt.2016.7.1.071
  9. Formation of bicontinuous, hydrophobic nylon 12 membranes via cold-solvent-induced phase separation for membrane distillation application vol.136, pp.5, 2018, https://doi.org/10.1002/app.47036
  10. Study on the heat and mass transfer in ultrasonic assisting vacuum membrane distillation vol.8, pp.3, 2014, https://doi.org/10.12989/mwt.2017.8.3.293
  11. PVDF/h-BN hybrid membranes and their application in desalination through AGMD vol.9, pp.4, 2014, https://doi.org/10.12989/mwt.2018.9.4.221